Finite Dependence

Robert A. Miller

Tilburg University

November 2023

Miller (Tilburg University)

Structural Econometrics Masterclass 6

November 2023 1 / 24

- Estimation of dynamic discrete choice models is complicated by the calculation of expected future payoffs.
- These complications are mitigated when finite dependence holds.
- Intuitively, ρ period dependence holds when two sequences of weighted choices leading off from different initial choices generate the same distribution of state variables $\rho + 1$ periods later.
- Most empirical applications have the finite dependence property.
- Under the conditional independence assumption, finite dependence has empirical content (can be tested) without specifying utilities.

Introduction

Framework

- $t \in \{1, \ldots, T\}$ stands for time, where $T \leq \infty$.
- $x_t \in \{1, \dots, X\} \equiv X$ is the state at t, where X is a finite set.
- $j \in \{1, \dots, J\}$ is a (mutually exclusive) choice.
- $d_{jt} = 1$ if j is picked at t and otherwise $d_{jt} = 0$.
- f_{jt}(x_{t+1}|x_t) is the probability of x_{t+1} occurring in period t + 1 conditional on x_t and d_{jt} = 1.
- $\epsilon_t \equiv (\epsilon_{1t}, \dots, \epsilon_{Jt})$ has continuous support and is IID over t with PDF $g(\epsilon_t)$ satisfying $E[\max{\{\epsilon_{1t}, \dots, \epsilon_{Jt}\}}] \leq \overline{\epsilon} < \infty$.
- For some β ∈ (0, 1), the individual sequentially chooses the vector d_t ≡ (d_{1t},..., d_{Jt}) to maximize:

$$E\left\{\sum_{t=1}^{T}\sum_{j=1}^{J}\beta^{t-1}d_{jt}\left[u_{jt}(x_{t})+\epsilon_{jt}\right]\right\}$$
(1)

Introduction

Optimality

• $d_t^o(x_t, \epsilon_t)$ is the optimal decision rule with j^{th} element $d_{jt}^o(x_t, \epsilon_t)$. • $p_t(x_t) \equiv (p_{1t}(x_t), \dots, p_{Jt}(x_t))$ are the CCPs, where:

$$p_{jt}(x_t) \equiv \int d_{jt}^o(x_t, \epsilon_t) g(\epsilon_t) d\epsilon_t$$
(2)

• $V_t(x_t)$ is the ex-ante value function defined as :

$$V_t(x_t) \equiv E\left\{\sum_{\tau=t}^T \sum_{j=1}^J \beta^{\tau-t} d_{j\tau}^o(x_{\tau}, \epsilon_{\tau}) \left(u_{j\tau}(x_{\tau}) + \epsilon_{j\tau}\right)\right\}$$

• The conditional value function for action *j* defined as:

$$\nu_{jt}(x_t) = u_{jt}(x_t) + \beta \sum_{x_{t+1}=1}^{X} V_{t+1}(x_{t+1}) f_{jt}(x_{t+1}|x_t)$$
(3)

• The conditional value function correction for action *j* is defined:

$$\psi_j[p_t(x)] \equiv V_t(x) - v_{jt}(x) \tag{4}$$

Introduction

Conditional value function representation

• For all $\rho \leq T - t$ and $\tau = t + 1, ..., t + \rho$, define any weights $\omega_{k\tau}(t, x_{\tau}, j)$ satisfying:

$$|\omega_{k au}(t,x_{ au},j)| < \infty ext{ and } \sum_{k=1}^{J} \omega_{k au}(t,x_{ au},j) = 1$$

• We showed $v_{jt}(x_t) =$

$$\begin{aligned} & u_{jt}(x_{t}) + \sum_{x=1}^{X} \beta^{\rho+1} V_{t+\rho+1}(x) \kappa_{t+\rho+1}(x|t, x_{t}, j) \\ & + \sum_{\tau=t+1}^{t+\rho} \sum_{k=1}^{J} \sum_{x_{\tau}=1}^{X} \beta^{\tau-t} \begin{bmatrix} u_{k\tau}(x_{\tau}) \\ + \psi_{k}[p_{\tau}(x_{\tau})] \end{bmatrix} \omega_{k\tau}(t, x_{\tau}, j) \kappa_{\tau}(x_{\tau}|t, x_{t}, j) \end{aligned}$$
(5)

where $\kappa_{t+1}(x_{t+1}|t, x_t, j) \equiv f_{jt}(x_{t+1}|x_t)$ and:

$$\kappa_{\tau+1}(x_{\tau+1}|t,x_t,j) \equiv \sum_{x_{\tau}=1}^{X} \sum_{k=1}^{J} \omega_{k\tau}(t,x_{\tau},j) f_{k\tau}(x_{\tau+1}|x_{\tau}) \kappa_{\tau}(x_{\tau}|t,x_t,j)$$

1 24

Finite Dependence

- Definition
 - The pair of choices {i, j} exhibits ρ-period dependence at (t, x_t) if there exist a pair of sequences of decision weights:

$$\{\omega_{k au}(t,x_{ au},i)\}_{(k, au)=(1,t+1)}^{(J,t+
ho)}$$
 and $\{\omega_{k au}(t,x_{ au},j)\}_{(k, au)=(1,t+1)}^{(J,t+
ho)}$

such that for all $x_{t+\rho+1} \in \{1, \dots, X\}$:

$$\kappa_{t+\rho+1}(x_{t+\rho+1}|t, x_t, i) = \kappa_{t+\rho+1}(x_{t+\rho+1}|t, x_t, j)$$

- Finite dependence:
 - trivially holds for $\rho = T t$ when $T < \infty$, but only merits attention when $\rho < T t$.
 - 2 extends to games by conditioning on the player as well.
 - imight hold for some choice pairs but not others, and for certain states but not others.
 - could be defined for mixed choices to start the sequence, not just deterministic moves; this analysis extends to the more general case.

• If there is finite dependence for (t, x_t, i, j) , then:

$$u_{jt}(x_t) + \psi_j[p_t(x_t)] - u_{it}(x_t) - \psi_i[p_t(x_t)] = \\ \sum_{\substack{(k,\tau,x_\tau)=(1,t+1,1)}}^{(J,t+\rho,X)} \beta^{\tau-t} \left\{ \begin{array}{l} u_{k\tau}(x_\tau) \\ + \psi_k[p_\tau(x_\tau)] \end{array} \right\} \left[\begin{array}{l} \omega_{k\tau}(t,x_\tau,i)\kappa_\tau(x_\tau|t,x_t,i) \\ - \omega_{k\tau}(t,x_\tau,j)\kappa_\tau(x_\tau|t,x_t,j) \end{array} \right]$$

- To derive this equation:
 - appealing to (4), replace $v_{jt}(x)$ with $V_t(x) \psi_j[p_t(x_t)]$ in (5)
 - form an analogous equation for i
 - difference the two resulting equations and note the $V_t(x)$ terms cancel.

Terminal choices

- Terminal choices and renewal choices are widely assumed in structural econometric applications of dynamic optimization problems and games.
- A *terminal choice* ends the evolution of the state variable with an *absorbing state* that is independent of the current state.
- If the first choice denotes a terminal choice, then:

$$f_{1t}(x_{t+1}|x) \equiv f_{1t}(x_{t+1})$$

for all $(t, x) \in \mathbb{T} \times \mathbb{X}$ and hence:

$$\sum_{x_{t+1}=1}^{X} f_{1,t+1}(x_{t+2}) f_{jt}(x_{t+1}|x_t) = f_{1,t+1}(x_{t+2})$$

• Setting $\omega_{k\tau}(t, x, i) = 0$ for all (x, i) and $k \neq 1$, Equation (7) implies:

$$u_{1t}(x_t) + \psi_1[p_t(x_t)] - u_{jt}(x_t) - \psi_j[p_t(x_t)]$$

= $\sum_{x_{t+1}=1}^{X} \beta \{ u_{1,t+1}(x_{t+1}) + \psi_1[p_{t+1}(x_{t+1})] \} f_{jt}(x_{t+1}|x_t)$

Simple Examples of Finite Dependence Renewal choices

- Similarly a *renewal choice* yields a probability distribution of the state variable next period that does not depend on the current state.
- If the first choice is a renewal choice, then for all $j \in \{1, \dots, J\}$:

$$\sum_{x_{t+1}=1}^{X} f_{1,t+1}(x_{t+2}|x_{t+1}) f_{jt}(x_{t+1}|x_t) = \sum_{x_{t+1}=1}^{X} f_{1,t+1}(x_{t+2}) f_{jt}(x_{t+1}|x_t)$$
$$= f_{1,t+1}(x_{t+2}) \sum_{x_{t+1}=1}^{X} f_{jt}(x_{t+1}|x_t)$$
$$= f_{1,t+1}(x_{t+2})$$
(8)

• In this case Equation (7) implies:

$$u_{1t}(x_t) + \psi_1[p_t(x_t)] - u_{jt}(x_t) - \psi_j[p_t(x_t)]$$

= $\sum_{x=1}^X \beta \{ u_{1,t+1}(x) + \psi_1[p_{t+1}(x)] \} [f_{jt}(x|x_t) - f_{1t}(x|x_t)]$

An example of 2-period finite dependence

- How does finite dependence work when ho>1?
- Consider the following model of labor supply and human capital.
- In each of T periods an individual chooses:

•
$$d_{2t} = 1$$
 to work

- $d_{1t} = 1$ to stay home.
- She accumulates human capital, x_t , from working. If:

•
$$d_{1t} = 1$$
 then $x_{t+1} = x_t$.

•
$$d_{2t} = 1$$
 and $t > 1$ then $x_{t+1} = x_t + 1$

$$x_2 = \begin{cases} 2 \text{ with probability 0.5} \\ 1 \text{ with probability 0.5} \end{cases}$$

• Summarizing, human capital only increases with work, by a unit, except in the first period, when it might jump to two.

Establishing finite dependence in the labor supply example

• When t > 1, work one period out of the next two, and:

• set
$$\omega_{1,t+1}(t, x_{\tau}, 2) = 1$$
, implying $\omega_{2,t+1}(t, x_{\tau}, 2) = 0$

- set $\omega_{2,t+1}(t, x_{\tau}, 1) = 1$, implying $\omega_{1,t+1}(t, x_{\tau}, 1) = 1$
- to attain 1-period dependence with $x_{t+2} = x_t + 1$.
- When t = 1 after:
 - staying home at t = 1 (that is $d_{11} = 1$), work for the next two periods; equivalently set $\omega_{k\tau}(t, x, j)$ so that:

$$\omega_{2,2}(1,0,1) = \omega_{2,3}(1,1,1) = 1$$

• working at t = 1 (that is $d_{21} = 1$), work in period 2 only if human capital increases one unit at t = 1; equivalently set $\omega_{k\tau}(t, x, j)$ so that:

$$\omega_{1,2}(1,2,2) = \omega_{2,2}(1,1,2) = \omega_{1,3}(1,2,2) = 1$$

• to attain 2-period dependence with $x_3 = 2$.

Another way of establishing finite dependence in the labor supply example

• Alternatively work in the first period $(d_{21} = 1)$ and stay home for the next two periods $(d_{12} = d_{13} = 1)$; equivalently set $\omega_{k\tau}(t, x, j)$ so that for $x \in \{1, 2\}$:

$$\omega_{1,2}(1,x,2) = \omega_{1,3}(1,x,2) = 1$$

Compare that with staying home in the first period (d₁₁ = 1), working next period (d₂₂ = 1), and with probability one half working in period 3; equivalently set ω_{kτ}(t, x, j) so that for x ∈ {1, 2}:

 In both cases the exante distribution of human capital is the same with κ₄(x₄|t, x₁, j) satisfying:

$$\kappa_4(x_4|1,0,1) = \kappa_4(x_4|1,0,2) = \begin{cases} 1/2 & \text{if } x_4 = 1\\ 1/2 & \text{if } x_4 = 2 \end{cases}$$

Nonstationary search model

- Consider a simple search model in which all jobs are temporary, lasting only one period.
- Each period $t \in \{1, \dots, T\}$ an individual may:
 - stay home by setting $d_{1t} = 1$
 - or apply for temporary employment setting $d_{2t} = 1$.
- Job applicants are successful with probability λ_t , time varying job offer arrival rates.
- Experience x ∈ {1,..., X} increases by one unit with each period of work, up to X, and does not depreciate.
- Current utility $u_{jt}(x_t)$ depends on choices, time and experience.

Finite dependence in this search model

- For all (t, x_t) with $x_t < X$ set:
 - $d_{1t} = 1$ (stay home) and then "apply for employment" with weight:

$$\begin{aligned} \lambda_t / \lambda_{t+1} &= \omega_{k=2,t+1}(t,x_t,i=1) \\ &= 1 - \omega_{k=1,t+1}(t,x_t,i=1) \end{aligned}$$

• $d_{2t} = 1$ (seek work) and then stay home:

$$\omega_{k=1,t+1}(t, x_t, j=2) = \omega_{k=1,t+1}(t, x_t+1, j=2) = 1$$

• to attain one-period dependence since:

$$\kappa_3(x_{t+3}|t, x_t, 1) = \kappa_3(x_{t+3}|t, x_t, 2) = \begin{cases} 1 - \lambda_t \text{ for } x_{t+3} = x_t \\ \lambda_t \text{ for } x_{t+3} = x_t + 1 \end{cases}$$

• Note that if $\lambda_t > \lambda_{t+1}$ then $\omega_{2,t+1}(t, x_t, 1) > 1$ and $\omega_{1,t+1}(t, x_t, 1) = 1 - \lambda_t / \lambda_{t+1} < 0$.

- Suppose the data comprise N observations of the state variables and decisions denoted by {d_{nt_n}, x_{nt_n}, x_{n,t_n+1}}^N_{n=1} sampled within a time frame of t ∈ {1,..., S}.
- For expositional simplicity suppose the probability of sampling each $x \in \{1, ..., X\}$ in $t \in \{1, ..., S\}$ is strictly positive.
- *M* separate instances of finite dependence within that time frame
- Say each pair of choices includes the first choice.
- Label the M paths by (j_m, x_m, t_m, ρ_m) for $m \in \{1, \dots, M\}$.
- Assume:
 - $g(\epsilon_t)$ is known.
 - $\theta \equiv (\theta_1, \dots, \theta_K) \in \Theta$, a closed convex set in \mathbb{R}^K .
 - $u_{jt}(x) \equiv \tilde{u}_{jt}(x,\theta)$, where $\tilde{u}_{jt}(x,\theta)$ is known function.
 - the *M* instances of finite dependence suffice.

The reduced form for a minimum distance (MD) estimator

• For all
$$(t, x, j) \in \{1, ..., S\} \times \{1, ..., X\} t \in \{1, ..., J\}$$
:

define

$$\widehat{p}_{jt}(x) \equiv \frac{\sum_{n=1}^{N} \mathbb{1}\left\{d_{nt_n j} = 1\right\} \mathbb{1}\left\{t_n = t\right\} \mathbb{1}\left\{x_{nt_n} = x\right\}}{\sum_{n=1}^{N} \mathbb{1}\left\{t_n = t\right\} \mathbb{1}\left\{x_{nt_n} = x\right\}}$$

- estimate the XJT CCP vector $p \equiv (p_{11}(1), \dots, p_{JS}(X))'$ with \hat{p} formed from $\hat{p}_{jt}(x)$.
- Also estimate $f_{jt}(x)$ with $\hat{f}_{jt}(x)$ in this first stage, for example with a cell estimator (similar to the CCP estimator).

Estimation The MD estimator

• Define
$$y(p, f) \equiv (y_1(p, f), \dots, y_M(p, f))'$$
 where:

$$y_m(p, f) \equiv \psi_1[p_{t_m}(x_m)] - \psi_{j_m}[p_{t_m}(x_m)]$$

$$+ \sum_{\tau=t_m+1}^{t_m+\rho_m} \sum_{k=1}^J \sum_{x_\tau=1}^X \beta^{\tau-t_m} \psi_k[p_\tau(x_\tau)] \begin{bmatrix} \omega_{k\tau}(t_m, x_\tau, 1)\kappa_\tau(x_\tau|t_m, x_m, 1) - \\ \omega_{k\tau}(t_m, x_\tau, j_m)\kappa_\tau(t_m, x_\tau|x_m, j_m) \end{bmatrix}$$
and $Z(p, f, \theta) \equiv (Z_1(p, f, \theta), \dots, Z_M(p, f, \theta))'$ where:
 $Z_m(p, f, \theta) \equiv \tilde{u}_{j_m, t_m}(x_m, \theta)$

$$- \sum_{\tau=t_m+1}^{t_m+\rho_m} \sum_{k=1}^J \sum_{x_\tau=1}^X \beta_{k\tau}^{\tau-t_m} \tilde{u}_{k\tau}(x_\tau, \theta) \begin{bmatrix} \omega_{k\tau}(t_m, x_\tau, 1)\kappa_\tau(x_\tau|t_m, x_m, 1) - \\ \omega_{k\tau}(t_m, x_\tau, j_m)\kappa_\tau(x_\tau|t_m, x_m, j_m) \end{bmatrix}$$

• For any *M* dimensional positive definite matrix *W* define:

$$\widehat{\theta} \equiv \arg\min_{\theta} \left[y\left(\widehat{p}, \widehat{f}\right) - Z\left(\widehat{p}, \widehat{f}, \theta\right) \right]' W\left[y\left(\widehat{p}\right) - Z\left(\widehat{p}, \widehat{f}, \theta\right) \right]$$
(9)

17 / 24

Estimation

Properties of the MD estimator

- If (θ_0, f) induces p, then $y(p, f) = Z(p, f, \theta_0)$.
- Hence $\hat{\theta}$ is \sqrt{N} consistent and asymptotically normal.
- Suppose $W = \widehat{W}$, a consistent estimate of the inverse of the asymptotic covariance matrix of $(\widehat{p}', \widehat{f}')'$.
- In this case the asymptotic covariance matrix of $\widehat{\theta}$ is:

$$\left[Z\left(\widehat{p},\widehat{f},\theta\right)/\partial\theta'\,\widehat{W}Z\left(\widehat{p},\widehat{f},\theta\right)/\partial\theta\right]^{-1}$$

If W is diagonal, (9) reduces to nonlinear least squares (NLS).
Suppose ũ_{jt}(x, θ) is linear in θ and β is known. If W = W then:

$$\widehat{\theta} = \left\{ \frac{\partial Z\left(\widehat{p}, \widehat{f}, \theta\right)'}{\partial \theta} \widehat{W}\left[\partial Z\left(\widehat{p}, \widehat{f}, \theta\right) / \partial \theta \right] \right\}^{-1} \frac{\partial Z\left(\widehat{p}, \widehat{f}, \theta\right)'}{\partial \theta} \widehat{W}y\left(\widehat{p}, \widehat{f}\right)$$

One-Period Dependence in Optimization Problems Approach

- *Guess and verify* is the only method that has been used to establish finite dependence.
- There is however a systematic way for determining finite period dependence.
- The alternative algorithm iterates between two procedures that checks:
 - counterfactual outcomes arising from deterministic choices that might either induce or rule out finite dependence.
 - Iist the elements of the matrix. The procedure is simpler to establish one-period dependence as there are no intermediate decisions between the initial choice and the choice of weights that generate finite dependence. Hence, checking the rank of a particular matrix is sufficient for determining one-period dependence.
- Much of the intuition for this algorithm can be conveyed by analyzing one period dependence where there are two choices.

Miller (Tilburg University)

One-Period Dependence in Optimization Problems

Equations determining one period dependence in a model with two choices

• Noting that when there are only 2 choices $\kappa_{t+1}(x_{t+1}|t, x_t, j) \equiv f_{jt}(x_{t+1}|x_t)$, reducing one-period dependence to:

$$\begin{aligned} & \kappa_{t+2}(x_{t+2}|t, x_t, 2) \\ & \equiv \sum_{x_{t+1}=1}^{X} \sum_{k=1}^{J=2} \omega_{k,t+1}(t, x_{t+1}, 2) f_{k,t+1}(x_{t+2}|x_{t+1}) f_{2t}(x_{t+1}|x_t) \\ & = \sum_{x_{t+1}=1}^{X} \sum_{k=1}^{J=2} \omega_{k,t+1}(t, x_{t+1}, 1) f_{k,t+1}(x_{t+2}|x_{t+1}) f_{1t}(x_{t+1}|x_t) \\ & \equiv \kappa_{t+2}(x_{t+2}|t, x_t, 1) \end{aligned}$$
(10)

• The weights sum to one, implying:

$$\omega_{1,t+1}(t, x_{t+1}, 1) = 1 - \omega_{2,t+1}(t, x_{t+1}, 1)$$

and $\kappa_{t+2}(x_{t+2}|t, x_t, 2)$ is a probability, so:

$$\kappa_{t+2}(X|t, x_t, j) = 1 - \sum_{x_{t+2}=1}^{X-1} \kappa_{t+2}(x_{t+2}|t, x_t, 2)$$

One-Period Dependence in Optimization Problems Counting the potential equations and unknowns

• Substituting out $\omega_{1.t+1}(t, x_{t+1}, 1)$ we rewrite (10) as:

$$\sum_{x_{t+1}=1}^{X} \left\{ \begin{array}{l} [f_{2,t+1}(x_{t+2}|x_{t+1}) - f_{1,t+1}(x_{t+2}|x_{t+1})] \\ \times \begin{bmatrix} \omega_{2,t+1}(t,x_{t+1},2) f_{2t}(x_{t+1}|x_{t}) \\ -\omega_{2,t+1}(t,x_{t+1},1) f_{1t}(x_{t+1}|x_{t}) \end{bmatrix} \right\}$$
$$= \sum_{x_{t+1}=1}^{X} f_{1,t+1}(x_{t+2}|x_{t+1}) [f_{1t}(x_{t+1}|x_{t}) - f_{2t}(x_{t+1}|x_{t})] \quad (11)$$

for all $x_{t+2} \in \{1, 2, \dots, X-1\}.$

- Nominally this is a linear system:
 - comprising X 1 equations
 - in 2X weights, $\omega_{2,t+1}(t, 1, k), \dots, \omega_{2,t+1}(t, X, k)$ for $k \in \{1, 2\}$.
 - with X 1 more unknowns than equations.
- Therefore one-period finite dependence holds if and only if a rank condition for the system is satisfied.

One-Period Dependence in Optimization Problems

Reducing the dimensions of the problem

• However this is only an upper bound on the number of weights and equations that need to be considered. Define:

$$\begin{aligned} \mathcal{A}_{j,t+1}\left(x_{t}\right) &\equiv \left\{ x \in \mathbb{X} : f_{jt}(x|x_{t}) > 0 \right\} \\ \mathcal{A}_{t+2}\left(x_{t}\right) &\equiv \left\{ \begin{array}{l} x \in \mathbb{X} : f_{k,t+1}(x|x') > 0 \\ \text{for } x' \in \mathcal{A}_{1,t+1} \cup \mathcal{A}_{2,t+1} \text{ and } k \in \{1,2\} \end{array} \right\} \end{aligned}$$

• If $x \notin \mathcal{A}_{j,t+1}\left(x_{t}\right)$ then $\omega_{k,t+1}\left(t,x,j
ight)$ is irrelevant

 \implies reducing the number of weights useful that can solve the system.

• If
$$x \notin \mathcal{A}_{t+2}(x_t)$$
 then $\kappa_{t+2}(x|t, x_t, 2) = \kappa_{t+2}(x|t, x_t, 2) = 0$

- \implies reducing the number of equations to be satisfied.
 - Thus the system (11) reduces to $A_{t+2} 1$ equations linear in $A_{1,t+1} + A_{2,t+1}$ weights, where:

$$A_{j,t+1} \equiv \sum_{x=1}^{X} \mathbf{1} \{ x \in \mathcal{A}_{j,t+1} (x_t) \} \qquad A_{t+2} \equiv \sum_{x=1}^{X} \mathbf{1} \{ x \in \mathcal{A}_{t+2} (x_t) \}$$

24

One-Period Dependence in Optimization Problems

Deriving a matrix representation

- We can incorporate these two features into the system of equations given by (11). Denote:
 - the $A_{j,t+1}$ dimensional vector of nonzero probabilities in the string $f_{jt}(1|x_t),\ldots,f_{jt}(X|x_t)$ by

$$\mathsf{K}_{j,t+1}(\mathcal{A}_{j,t+1})$$

• the $\mathcal{A}_{j,t+1}$ by $\mathcal{A}_{t+2} - 1$ matrix, the first $A_{t+2} - 1$ columns of the $A_{j,t+1} \times A_{t+2}$ transition matrix from $\mathcal{A}_{j,t+1}$ to \mathcal{A}_{t+2} when choice k is made in period t+1 (containing elements $f_{k,t+1}(x'|x)$, where $x \in \mathcal{A}_{j,t+1}$ and $x' \in \mathcal{A}_{t+2}$) by

$$\mathsf{F}_{k,t+1}(\mathcal{A}_{j,t+1})$$

 the A_{j,t+1} dimensional vector of weights on each of the attainable states, given initial choice j at t + 1 for setting d_{2t} = 1, comprising elements ω_{t+1}(x, j) for each x ∈ A_{j,t+1} by

$$\Omega_{t+1}\left(\mathcal{A}_{j,t+1},j
ight)$$

One-Period Dependence in Optimization Problems Rank condition

Also let:

$$\begin{aligned} \mathcal{K}_{t+1} &\equiv \begin{bmatrix} \mathsf{F}_{1,t+1}(\mathcal{A}_{1,t+1}) \\ -\mathsf{F}_{1,t+1}(\mathcal{A}_{2,t+1}) \end{bmatrix}' \begin{bmatrix} \mathsf{K}_{1,t+1}(\mathcal{A}_{1,t+1}) \\ \mathsf{K}_{2,t+1}(\mathcal{A}_{2,t+1}) \end{bmatrix} \\ \mathsf{H}_{t+1} &\equiv \begin{bmatrix} \mathsf{F}_{2,t+1}(\mathcal{A}_{2,t+1}) - \mathsf{F}_{1,t+1}(\mathcal{A}_{2,t+1}) \\ \mathsf{F}_{1,t+1}(\mathcal{A}_{1,t+1}) - \mathsf{F}_{2,t+1}(\mathcal{A}_{1,t+1}) \end{bmatrix} \end{aligned}$$

 Substituting these transformations into (11), one period dependence holds if and only if there exists an (A_{1,t+1} + A_{2,t+1}) vector of unknowns denoted by D_{t+1} solving:

$$\mathcal{K}_{t+1} = \mathsf{H}_{t+1} \left[\begin{array}{c} \Omega_{t+1} \left(\mathcal{A}_{j,t+1}, 2 \right) \circ \mathsf{K}_{2,t+1} (\mathcal{A}_{2,t+1}) \\ \Omega_{t+1} \left(\mathcal{A}_{j,t+1}, 1 \right) \circ \mathsf{K}_{1,t+1} (\mathcal{A}_{1,t+1}) \end{array} \right] \equiv \mathsf{H}_{t+1} \mathsf{D}_{t+1}$$
(12)

24 / 24

where \circ means element-by-element multiplication.

• A solution to (12) for D_{t+1} exists if and only if the rank of H_{t+1} equals the rank of $H_{t+1}^* \equiv \begin{bmatrix} \mathcal{K}_{t+1} : H_{t+1} \end{bmatrix}$.