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Job Matching and Occupational Choice (Miller, 1984)
Individual payoffs and choices

Relaxing the conditional independence assumption is tantamount to
reopening the multiple integration challenge.
Consider what happens when unobserved beliefs evolve endogenously.
The payoff from working job m ∈ {1, 2, . . .} at time t ∈ {0, 1, . . .} is:

xmt ≡ ψt + ξm + σmεmt (1)

where:

ψt is a lifecycle trend shaping term that plays no role in the analysis;

ξm is a job match parameter drawn from N
(

γm , δ
2
m

)
;

εmt is an idiosyncratic iid disturbance drawn from N (0, 1)

Every period t the individual chooses a job m ∈ {1, 2, . . .} where:
dt = (d1t , d2t , . . .) denotes her choice, dmt ∈ {0, 1} and
∑∞
m=1 dmt = 1.

her realized lifetime utility is ∑∞
t=0 ∑∞

m=1 βtdmtxmt
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Job Matching and Occupational Choice
Processing information

At t = 0 the individual sees
(
γm , δ

2
m

)
for each m.

After making her choice, she also sees ψt , and dmtxmt for all m.

Her posterior beliefs for job m at time t ∈ {0, 1, . . .} are
N
(
γmt , δ

2
mt

)
where:

γmt ,+1 =
δ−2m γm + σ−2m ∑t

s=0 (xms − ψs ) dms
δ−2m + σ−2m ∑t

s=0 dms
= γmt + (xmt − ψt )

/(
σ2mδ−2mt + 1

)
dmt

and
δ−2m,t+1 = δ−2m + σ−2m ∑t

s=0 dms = δ−2mt + σ−2m (2)

She maximizes the sum of expected payoffs, sequentially choosing dt
given her beliefs N

(
γmt , δ

2
mt

)
for each m ∈ M.
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Optimization
Maximizing using Dynamic Allocation Indices (DAIs)

Corollary (from Theorem 2 in Gittens and Jones,1974)

At each t ∈ {1, 2, . . .} it is optimal to select the m ∈ M maximizing:

DAIm (γmt , δmt ) ≡ sup
τ≥t

{
E
[
∑τ
r=t βr−t (xmr − ψr ) |γmt , δmt

]
E
[
∑τ
r=t βr−t |γmt , δmt

] }

If τ is fixed and there is perfect foresight, the fundamental ratio is:
the discounted sum of benefits ∑τ

r=t βr−t (xmr − ψr )
divided by the discounted sum of time ∑τ

r=t βr−t .

For example if project A yields 5 and takes 2 periods to complete, and
B yields 3 but only takes 1 period, do A first if and only if:

5+ 3β2 > 3+ 5β

⇐⇒ 5 (1− β) > 3 (1− β) (1+ β)

⇐⇒ DAIA ≡ 5
/
(1+ β) > 3 ≡ DAIB
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Optimization
Bayesian learning with a normal distribution

Define D (σ) is the (standard) DAI for a (hypothetical) job whose

fixed match parameter ξ is drawn from N (0, 1)
whose random component in the payoff is σεt .

Corollary (Proposition 4 of Miller, 1984)
In this model:

DAIm (γmt , δmt ) = γmt + δmtD

[(
σm
δm

)2
+∑t−1

s=0 dms

]

We can prove D (·) is a decreasing function, implying that
DAIm (γmt , δmt ) ↑ as:

γmt and δmt and β ↑
σm and ∑t−1s=0 dms ↓.
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Probability Distribution of Spell Lengths
Hazard rate for spell length

Assuming (γm , δm , σm) = (γ, δ, σ) for all m, a world in which all
differences between jobs are match specific, it suffi ces to only keep
track of the current job match. (Why?)
Define ht as the discrete hazard at t periods as the probability a spell
ends after t periods conditional on surviving that long. Then:

ht ≡ Pr
{

γt + δtD
[(σ

δ

)2
+ t, β

]
≤ γ+ δD

[(σ

δ

)2
, β

]}
= Pr

{
γt − γ

σ
≤ δ

σ
D
[(σ

δ

)2
, β

]
− δt

σ
D
[(σ

δ

)2
+ t, β

]}
= Pr

{
ρt ≤ α−1/2D (α, β)− (α+ t)−1/2 D (α+ t, β)

}
where ρt ≡ (γt − γ) /σand α ≡ (σ /δ )2 which implies:

δt
σ
=

[
δ−2 + tσ−2

]−1/2

σ
=

[(
δ

σ

)−2
+ t

]−1/2

= (α+ t)−1/2
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Probability Distribution of Spell Lengths
Relating the hazard rate to the distribution of normalized match qualities

Define the probability distribution of transformed means of spells
surviving at least t periods as:

Ψt (ρ) ≡ Pr {ρt ≤ ρ} = Pr
{

σ−1 (γt − γ) ≤ ρ
}
= Pr {γt ≤ γ+ ρσ}

To help fix ideas note that Ψ0 (ρ) = 0 for all ρ < 0 and Ψ0 (0) = 1.

From the definition of ht and Ψt (ρ):

ht = Pr
{

ρt ≤ α−1/2D (α, β)− (α+ t)−1/2 D (α+ t, β)
}

= Ψt

[
α−1/2D (α, β)− (α+ t)−1/2 D (α+ t, β)

]
To derive the discrete hazard, we recursively compute Ψt (ρ).
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Probability Distribution of Spell Lengths
Inequalities relating to normalized match qualities after one period

By definition every match survives at least one period, and hence:

Ψ1 (ρ) = Pr {γ1 ≤ γ+ ρσ}

From the Bayesian updating rule for γt :

γ1 ≤ γ+ ρσ

⇔ δ−2γ+ σ−2 (x1 − ψ1)

δ−2 + σ−2
≤ γ+ ρσ

⇔ δ−2γ+ σ−2 (ξ + σε) ≤ (γ+ ρσ)
(
δ−2 + σ−2

)
⇔ αγ+ ξ + σε ≤ (γ+ ρσ) (α+ 1)

⇔ (ξ − γ) + σε ≤ σ (α+ 1) ρ

⇔ δ−1 (ξ − γ) + α1/2 ε ≤ α1/2 (α+ 1) ρ
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Probability Distribution of Spell Lengths
Computing the distribution of normalized match qualities after one period

Since every match survives at least one period, we can calculate
Ψ1 (ρ) for all matches:

Ψ1 (ρ) ≡ Pr {γ1 ≤ γ+ ρσ} ≡ Pr {ρ1 ≤ ρ}

Appealing to the inequalities from the previous slide:

Ψ1 (ρ) = Pr {γ1 ≤ γ+ ρσ}
= Pr

{
δ−1 (ξ − γ) + α1/2 ε ≤ α1/2 (α+ 1) ρ

}
= Pr

{
ε′ + α1/2 ε ≤ α1/2 (α+ 1) ρ

}
= Pr

{
(α+ 1)1/2 ε′′ ≤ α1/2 (α+ 1) ρ

}
= Φ

[
α1/2 (α+ 1)1/2 ρ

]
where ε, ε′ and ε′′ are independent standard normal random variables.
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Probability Distribution of Spell Lengths
Solving for the one period hazard rate and the probability distribution of survivors

The spell ends if:

ρ1 < α−1/2D (α, β)− (α+ 1)−1/2 D (α+ 1, β) ≡ ρ∗1

Therefore the proportion of spells ending after one period is:

h1 = Ψ1

[
α−1/2D (α, β)− (α+ 1)−1/2 D (α+ 1, β)

]
= Φ


[
α1/2 (α+ 1)1/2

]
×
[
α−1/2D (α, β)− (α+ 1)−1/2 D (α+ 1, β)

] 
> 1/2 (because D (·) is decreasing in α)

Intuitively, half the time a (negative) signal reduces the posterior
mean below its prior, making a new job with same initial
characteristics as the old job look more attractive because:

the new job has greater information value.
it also has higher mean.
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Probability Distribution of Spell Lengths
Recursively computing the distribution of normalized match qualities

Continuing in this line of reasoning:

Ψ2 (ρ) =

∫ ∞
−∞ Φ

[
α1/2 (α+ 1)1/2 ×(

ρ− ε [(α+ 1) (α+ 2)]−1/2
) ] dΦ (ε)− h1

1− h1

and more generally (from page 1112 of Miller, 1984):

Ψt+1 (ρ) ≡

∫ ∞
−∞ Ψt

(
ρ− ε [(α+ t) (α+ t + 1)]−1/2

)
dΦ (ε)− ht

1− ht
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Maximum Likelihood Estimation
Complete and incomplete spells

Suppose the sample comprises a cross section of spells
n ∈ {1, . . . ,N}, some of which are completed after τn periods, and
some of which are incomplete lasting at least τn periods. Let:

ρ (n) ≡
{

τn if spell is complete
{τn, τn+1, . . .} if spell is incomplete

Let pτ (αn, βn) denote the unconditional probability of individual n
with discount factor βn working τ periods in a new job with
information factor αn before switching to another new job in the same
occupation:

pτ (αn, βn) ≡ hτ (αn, βn)∏
τ−1
s=1 [1− hs (αn, βn)]

Then the joint probability of spell duration times observed in the
sample is:

∏N
n=1 ∑τ∈ρ(n)

pτ (αn, βn)
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Maximum Likelihood Estimation
The likelihood function and structural estimates

Suppose the information and discount factors depend on Xn, some
individual socio-economic factors;

αn ≡ AXn
βn ≡ BXn

where A and B are the structural parameters to be estimated. Then
the likelihood is:

LN (A,B) ≡∏N
n=1 ∑τ∈ρ(n)

pτ (AXn,BXn)

Briefly, the structural estimates show that:
1 individuals care about the future and the information value from job
experimentation;

2 the occupational dummy variables are significant, suggesting that the
choice of different occupations is systematic;

3 educational groups have different beliefs and learning rates.
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Motivating Example
Rust’s (1987) bus engine revisited

The integration in the job matching example is:
1 quite cumbersome
2 suggestive of how quickly integration becomes unmanageable if jobs
differ exante as well as expost.

CCP estimators can be exploited to ameliorate this problem.
Recalling Mr. Zurcher’s problem:

Replace the existing engine (d1t = 1), or keep it for at least one more
period (d2t = 1).
Bus mileage xt follows the update rule xt+1 = d1t + d2t (xt + 1).
Transitory iid choice-specific shocks, εjt , are T1EV.
Zurcher sequentially maximizes expected discounted sum of payoffs:

E

{
∞

∑
t=1

βt−1 [d2t (θ1xt + θ2s + ε2t ) + d1tε1t ]

}
Now suppose s, the bus make, is unobserved.
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Motivating Example
ML Estimation when CCP’s are known (infeasible)

To show how the EM algorithm helps, consider the infeasible case
where s ∈ {1, . . . ,S} is unobserved but p(x , s) is known.
Let πs denote population probability of being in unobserved state s.
Supposing β is known the ML estimator for this "easier" problem is:

{θ̂, π̂} = argmax
θ,π

N

∑
n=1

ln

[
S

∑
s=1

πs
T

∏
t=1
l(dnt |xnt , s, p, θ)

]
where p ≡ p(x , s) is a string of probabilities assigned/estimated for
each (x , s) and l(dnt |xnt , sn, p, θ) is derived from our representation
of the conditional valuation functions and takes the form:

d1nt + d2nt exp(θ1xnt + θ2s + β ln [p(0, s)]− β ln [p(xnt + 1, s)]
1+ exp(θ1xnt + θ2s + β ln [p(0, s)]− β ln [p(xnt + 1, s)])

Maximizing over the sum of a log of summed products is
computationally burdensome.
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Motivating Example
Why EM is attractive (when CCP’s are known)

The EM algorithm is a computationally attractive alternative to
directly maximizing the likelihood.
Denote by dn ≡ (dn1, . . . , dnT ) and xn ≡ (xn1, . . . , xnT ) the full
sequence of choices and mileages observed in the data for bus n.
At the mth iteration:

q(m+1)ns = Pr
{
s
∣∣∣dn, xn,θ(m),π(m)s , p

}
=

π
(m)
s ∏T

t=1 l(dnt |xnt , s, p, θ(m))
∑S
s ′=1 π

(m)
s ′ ∏T

t=1 l(dnt |xnt , s ′, p, θ(m))

π
(m+1)
s = N−1

N

∑
n=1

q(m+1)ns

θ(m+1) = argmax
θ

N

∑
n=1

S

∑
s=1

T

∑
t=1
q(m+1)ns ln[l(dnt |xnt , s, p, θ)]
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Motivating Example
Steps in our algorithm when s is unobserved and CCP’s are unknown

Our algorithm begins by setting initial values for θ(1), π(1), and p(1) (·):
Step 1 Compute q(m+1)ns as:

q(m+1)ns =
π
(m)
s ∏T

t=1 l
[
dnt |xnt , s, p(m), θ(m)

]
∑S
s ′=1 π

(m)
s ∏T

t=1 l
(
dnt |xnt , s ′, p(m), θ(m)

)
Step 2 Compute π

(m+1)
s according to:

π
(m+1)
s =

∑N
n=1 q

(m+1)
ns

N

Step 3 Update p(m+1)(x , s) using one of two rules below.
Step 4 Obtain θ(m+1) from:

θ(m+1) = argmax
θ

N

∑
n=1

S

∑
s=1

T

∑
t=1
q(m+1)ns ln

[
l
(
dnt |xnt , sn, p(m+1), θ

)]
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Motivating Example
Updating the CCP’s

Take a weighted average of decisions to replace engine, conditional on
x , where weights are the conditional probabilities of being in
unobserved state s.

Step 3A Update CCP’s with:

p(m+1)(x , s) =
∑N
n=1 ∑T

t=1 d1ntq
(m+1)
ns I (xnt = x)

∑N
n=1 ∑T

t=1 q
(m+1)
ns I (xnt = x)

Or in a stationary infinite horizon model use identity from model that
likelihood returns CCP of replacing the engine:

Step 3B Update CCP’s with:

p(m+1)(xnt , sn) = l(dnt1 = 1|xnt , sn, p(m), θ(m))
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Monte Carlo
Finite horizon renewal problem

Suppose s ∈ {0, 1 } equally weighted.
There are two observed state variables

1 total accumulated mileage:

x1t+1 =
{

∆t if d1t = 1
x1t + ∆t if d2t = 1

2 permanent route characteristic for the bus, x2, that systematically
affects miles added each period.

We assume ∆t ∈ {0, 0.125, . . . , 24.875, 25} is drawn from:

f (∆t |x2) = exp [−x2(∆t − 25)]− exp [−x2(∆t − 24.875)]

and x2 is a multiple 0.01 drawn from a discrete equi-probability
distribution between 0.25 and 1.25.
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Monte Carlo
Finite horizon renewal problem

Let θ0t be an aggregate shock (denoting cost fluctuations say).

The difference in current payoff from retaining versus replacing the
engine is:

u2t (x1t , s)− u1t (x1t , s) ≡ θ0t + θ1min {x1t , 25}+ θ2s

Denoting the observed state variables by xt ≡ (x1t , x2) , this
translates to:

v2t (xt , s)− v1t (xt , s) = θ0t + θ1min {x1t , 25}+ θ2s

+β ∑
∆t∈Λ

{
ln
[

p1t (0, s)
p1t (x1t + ∆t , s)

]}
f (∆t |x2)
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Monte Carlo
Table 1 of Arcidiacono and Miller (2011, page 1854)
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Appendix: The Estimators
Maximization

We parameterize ujt (zt ) and G (εt ) by θ, fjt (zt+1|zt ) with α, and
following our motivating example, we define two estimators.

Given any CCP vector p̂, both solve a first order condition that
maximizing the joint log likelihood also solves:

(θ̂, π̂, α̂) = argmax
(θ,π,α)

∑N
n=1 log

[
∑S
s=1 πsL (dn, xn |xn1, s ; θ, α, p̂)

]
where L (dn, xn |xn1, s ; θ, α, p̂) is the likelihood of the (panel length)
sequence (dn, xn):

L (dn, xn |xn1, s ; θ, α,π, p)

=
T
∏
t=1

J

∑
j=1
djnt ljt (xnt , s, θ,π, p)fjt (xn,t+1|xnt , s, α)
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The Estimators
Using the Likelihood to obtain the CCP’s

The difference between the estimators arises from how p̂ is defined.

The first estimator is based on the fact that ljt (xnt , sn, θ, α,π, p) is the
likelihood of observing individual n make choice j at time t given sn.

Accordingly define p̂ (x , s) to solve:

p̂jt (x , s) = ljt (x , s; θ̂, α̂, π̂, p̂)

The large sample properties are standard.
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Appendix: The Estimators
An empirical approach to the CCP’s

Let L̂n(sn = s) denote the joint likelihood of the data for n and being

in unobserved state s evaluated at
(

θ̂, α̂, π̂, p̂
)
.

L̂n(sn = s) ≡ π̂sL
(
dn, xn |xn1, s ; θ̂, p̂

)
Also denote by L̂n the likelihood of observing (dn, xn) given parameter

values
(

π̂, θ̂, p̂
)
:

L̂n ≡ ∑S
s=1 π̂sL

(
dn, xn |xn1, s ; θ̂, p̂

)
= ∑S

s=1 L̂n(sn = s)

As an estimated sample approximation, N−1 ∑N
n=1

[
L̂n(sn = s)/L̂n

]
is

the fraction of the population in s.
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Appendix: The Estimators
Another CCP "fixed point"

Similarly:

1 N−1 ∑Nn=1
[
I (xnt = x)L̂n(sn = s)/L̂n

]
is the estimated fraction of the

population in s with x at t.
2 N−1 ∑Nn=1

[
djnt I (xnt = x)L̂n(sn = s)/L̂n

]
is the estimated fraction

choosing j at t as well.

We define:

p̂jt (x , s) =[
N
∑
n=1

djnt I (xnt = x)
L̂n(sn = s)

L̂n

]/[
N
∑
n=1

I (xnt = x)
L̂n(sn = s)

L̂n

]

Compared to the first one this estimator has similar properties but
imposes less structure.
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