Conditional Choice Probability Estimators

Robert A. Miller
Tilburg University

November 2023

Unrestricted Estimation

Data and outside knowledge

- Recall the social surplus function is:

$$
V_{t}\left(x_{t}\right) \equiv E\left\{\sum_{\tau=t}^{T} \sum_{j=1}^{J} \beta^{\tau-t-1} d_{j \tau}^{o}\left(x_{\tau}, \epsilon_{\tau}\right)\left(u_{j \tau}\left(x_{\tau}\right)+\epsilon_{j \tau}\right)\right\}
$$

where $d_{j \tau}^{o}\left(x_{\tau}, \epsilon_{\tau}\right)$ is the optimal choice.

- Suppose the data comes from a panel and assume we know:
(1) the discount factor β
(2) the distribution of disturbances $G_{t}(\epsilon \mid x)$
(3) $u_{1 t}(x)$ (or more generally one of the payoffs for each state and time).
(c) $u_{1 t}(x)=0$ (for notational convenience).

Unrestricted Estimation

The likelihood

- Consider a panel:
- of independently drawn individuals $n \in\{1, \ldots, N\}$
- each with history $t \in\{1, \ldots, T\}$
- and data on their state variables, $x_{n t}$
- and decisions $d_{n t}=\left(d_{n 1 t}, \ldots, d_{n J t}\right)$.
- The joint probability distribution of the decisions and outcomes is:

$$
\prod_{n=1}^{N} \prod_{t=1}^{T}\left(\sum_{j=1}^{J} \sum_{x^{\prime}=1}^{X} d_{n j t} \mathbf{1}\left\{x_{n, t+1}=x^{\prime}\right\} p_{j t}(x) f_{j t}\left(x^{\prime} \mid x\right)\right)
$$

- Taking logs yields:

$$
\sum_{n=1}^{N} \sum_{t=1}^{T} \sum_{j=1}^{J} d_{n j t}\left\{\log \left[p_{j t}\left(x_{n t}\right)\right]+\sum_{x=1}^{X} \mathbf{1}\left\{x_{n, t+1}=x\right\} \log \left[f_{j t}\left(x \mid x_{n t}\right)\right]\right\}
$$

Unrestricted Estimation

The reduced form

- Note the choice probabilities are additively separable from the transition probabilities in the formula for the joint distribution of decisions and outcomes.
- Hence the estimation of the joint likelihood splits:
- One piece deals with the choice probabilities conditional on the state.
- The other deals with the transition conditional on the choice and state.
- Maximizing each piece separately with respect to $f_{j}\left(x^{\prime} \mid x\right)$ and $p_{t}\left(x_{n t}\right)$ gives the unrestricted estimators:

$$
\widehat{f}_{j t}\left(x^{\prime} \mid x\right)=\frac{\sum_{n=1}^{N} \mathbf{1}\left\{x_{n t}=x, d_{n j t}=1, x_{n, t+1}=x^{\prime}\right\}}{\sum_{n=1}^{N} \mathbf{1}\left\{x_{n t}=x, d_{n j t}=1\right\}}
$$

and:

$$
\begin{equation*}
\widehat{p}_{j t}(x)=\frac{\sum_{n=1}^{N} \mathbf{1}\left\{x_{n t}=x, d_{n j t}=1\right\}}{\sum_{n=1}^{N} \mathbf{1}\left\{x_{n t}=x\right\}} \tag{1}
\end{equation*}
$$

Unrestricted Estimation

Estimating an intermediate probability distribution

- Let $\kappa_{\tau}\left(x_{\tau+1} \mid t, x_{t}, j\right)$ denote the probability of reaching $x_{\tau+1}$ at $\tau+1$ from x_{t} by following action j at t and then always choosing the first action:

$$
\kappa_{\tau}\left(x_{\tau+1} \mid t, x_{t}, j\right) \equiv \begin{cases}f_{j t}\left(x_{t+1} \mid x_{t}\right) & \tau=t \tag{2}\\ \sum_{x=1}^{x} f_{1 \tau}\left(x_{\tau+1} \mid x\right) \kappa_{\tau-1}\left(x \mid t, x_{t}, j\right) & \tau=t+1, \ldots\end{cases}
$$

- Thus we can recursively estimate $\kappa_{\tau}\left(x_{\tau+1} \mid t, x_{t}, j\right)$ with:

$$
\widehat{\kappa}_{\tau}\left(x_{\tau+1} \mid t, x_{t}, j\right) \equiv \begin{cases}\widehat{f}_{j t}\left(x_{t+1} \mid x_{t}\right) & \tau=t \\ \sum_{x=1}^{X} \widehat{f}_{1 \tau}\left(x_{\tau+1} \mid x\right) \widehat{\kappa}_{\tau-1}\left(x \mid t, x_{t}, j\right) & \tau=t+1, \ldots\end{cases}
$$

- Similarly we estimate $\psi_{j t}\left(x_{t}\right) \equiv V_{t}(x)-v_{j t}(x)$ with $\widehat{\psi}_{j t}\left(x_{t}\right)$ using the $\hat{p}_{j t}(x)$ estimates of the CCPs.

Unrestricted Estimation

Utility parameter estimates

- From the previous lecture:

$$
\begin{aligned}
u_{j t}\left(x_{t}\right)= & \psi_{1 t}\left(x_{t}\right)-\psi_{j t}\left(x_{t}\right) \\
& +\sum_{\tau=1}^{T-t} \sum_{x=1}^{X} \beta^{\tau-t} \psi_{1, t+\tau}(x)\left[\kappa_{t 1, \tau-1}\left(x \mid x_{t}\right)-\kappa_{t j, \tau-1}\left(x \mid x_{t}\right)\right]
\end{aligned}
$$

- Substituting $\widehat{\kappa}_{\tau-1}\left(x \mid x_{t}, j\right)$ for $\kappa_{\tau-1}\left(x \mid x_{t}, j\right)$ and $\psi_{j t}\left(x_{t}\right)$ with $\widehat{\psi}_{j t}\left(x_{t}\right)$ then yields:

$$
\begin{aligned}
\widehat{u}_{j t}\left(x_{t}\right) \equiv & \widehat{\psi}_{1 t}\left(x_{t}\right)-\widehat{\psi}_{j t}\left(x_{t}\right) \\
& +\sum_{\tau=1}^{T-t} \sum_{x=1}^{X} \beta^{\tau-t} \widehat{\psi}_{1, t+\tau}(x)\left[\widehat{\kappa}_{t 1, \tau-1}\left(x \mid x_{t}\right)-\widehat{\kappa}_{t j, \tau-1}\left(x \mid x_{t}\right)\right]
\end{aligned}
$$

- The stationary case is similar (and has the matrix representation we discussed in previous lectures).

Large Sample or Asymptotic Properties

Asymptotic efficiency

- By the Law of Large Numbers $\widehat{f}_{j t}\left(x^{\prime} \mid x\right)$ converges to $f_{j t}\left(x^{\prime} \mid x\right)$ and $\widehat{p}_{j t}(x)$ converges to $p_{j t}(x)$, both almost surely.
- By the Central Limit Theorem both estimators converge at \sqrt{N} and and have asymptotic normal distributions.
- Both $\widehat{f}_{j t}\left(x^{\prime} \mid x\right)$ and $\widehat{p}_{j t}(x)$ are ML estimators for $f_{j t}\left(x^{\prime} \mid x\right)$ and $p_{j t}(x)$ and obtain the Cramer-Rao lower bound asymptotically.
- Since and $u_{j t}(x)$ is exactly identified, it follows by the invariance principle that $\widehat{u}_{j t}(x)$ is consistent and asymptotically efficient for $u_{j t}\left(x_{t}\right)$, also attaining its Cramer Rao lower bound.
- Thus the unrestricted ML and CCP estimators are identical.
- Greater efficiency can only be obtained by making functional form assumptions about $u_{j t}\left(x_{t}\right)$ and $f_{j t}\left(x^{\prime} \mid x\right)$.

Restricting the Parameter Space

Parameterizing the primitives

- In practice applications further restrict the parameter space.
- For example assume $\theta \equiv\left(\theta^{(1)}, \theta^{(2)}\right) \in \Theta$ is a closed convex subspace of Euclidean space, and:
- $u_{j t}(x) \equiv u_{j}\left(x, \theta^{(1)}\right)$
- $f_{j t}\left(x \mid x_{n t}\right) \equiv f_{j t}\left(x \mid x_{n t}, \theta^{(2)}\right)$
- We now define the model by (T, β, θ, g).
- Assume the DGP comes from $\left(T, \beta, \theta_{0}, g\right)$ where:

$$
\theta_{0} \equiv\left(\theta_{0}^{(1)}, \theta_{0}^{(2)}\right) \in \Theta^{(\text {interior })}
$$

- For example many applications assume:
- $u_{j t}(x) \equiv x^{\prime} \theta_{j}^{(1)}$ is linear in x and does not depend on t
- $f_{j t}\left(x \mid x_{n t}\right)$ is degenerate, x following a deterministic law of motion that does not depend on t.

Quasi Maximum Likelihood (Hotz and Miller, 1993)

Overview of the steps

- A Quasi Maximum Likelihood (QML) estimator can be obtained by estimating:
(1) $\theta_{0}^{(2)}$ with $\theta_{L M M L}^{(2)}$ from the data on $f_{j t}\left(x \mid x_{t}, \theta^{(2)}\right)$.
(2) $\kappa_{\tau}\left(x \mid t, x_{t}, k, \theta_{0}^{(2)}\right)$ with $\widehat{\kappa}_{\tau}\left(x \mid t, x_{t}, k, \theta_{\text {LIML }}^{(2)}\right)$ using $f_{j t}\left(x \mid x_{t}, \theta_{\text {LIML }}^{(2)}\right)$.
(3) $\psi_{1 t}(x)$ with $\hat{\psi}_{1 t}(x)$ by substituting cell estimators $\widehat{p}_{j t}(x)$ for $p_{j t}(x)$.
(9) $v_{j t}\left(x, \theta^{(1)}, \theta_{0}^{(2)}\right)$ with $\widehat{v}_{j t}\left(x, \theta^{(1)}, \theta_{\text {LIML }}^{(2)}\right)$ for any given $\theta^{(1)}$, given below.
(5) $p_{j t}\left(x, \theta^{(1)}, \theta_{0}^{(2)}\right)$ with $\widehat{p}_{j t}\left(x, \theta^{(1)}, \theta_{\text {LIML }}^{(2)}\right)$ by substituting $\widehat{v}_{j t}\left(x, \theta^{(1)}, \theta_{\text {LIML }}^{(2)}\right)$ for $v_{j t}\left(x, \theta^{(1)}, \theta_{0}^{(2)}\right)$ in ML estimator.

Quasi Maximum Likelihood Estimation

Elaborating the first three steps in QML estimation

- Working through each step:

1. This step is quite common whenever $f_{j t}\left(x \mid x_{n t}, \theta^{(2)}\right)$ must be estimated:

$$
\theta_{\text {LIML }}^{(2)} \equiv \underset{\theta^{(2)}}{\arg \max } \sum_{n=1}^{N} \sum_{t=1}^{T} \sum_{j=1}^{J} \sum_{x=1}^{X} d_{n j t} \mathbf{1}\left\{x_{n, t+1}=x\right\} \ln \left[f_{j t}\left(x \mid x_{n t}, \theta^{(2)}\right)\right]
$$

2. Here (2) is replaced with:

$$
\begin{array}{rll}
& \widehat{\kappa}_{\tau}\left(x_{\tau+1} \mid t, x_{t}, j, \theta_{\text {LIML }}^{(2)}\right) & \\
\equiv & \begin{cases}f_{j t}\left(x_{t+1} \mid x_{t}, \theta_{\text {LIML }}^{(2)}\right) & \tau=t \\
\sum_{x=1}^{x} f_{1 \tau}\left(x_{\tau+1} \mid x, \theta_{\text {LIML }}^{(2)}\right) \widehat{\kappa}_{\tau-1}\left(x \mid t, x_{t}, j, \theta_{\text {LIML }}^{(2)}\right) & \tau=t+1, \ldots\end{cases}
\end{array}
$$

3. For example if ϵ_{t} is T 1 EV , then $\hat{\psi}_{1 t}(x)=0.57 \ldots-\ln \left[p_{1 t}(x)\right]$.

Quasi Maximum Likelihood Estimation

Elaborating the last steps in QML estimation

- With respect to the last two steps:

4. Appealing to the Representation theorem:

$$
\widehat{v}_{j t}\left(x, \theta^{(1)}, \theta_{L I M L}^{(2)}\right)=u_{j t}\left(x, \theta^{(1)}\right)+\widehat{h}_{j t}(x)
$$

where the numeric dynamic correction factor $\widehat{h}_{k t}(x)$ is defined:

$$
\widehat{h}_{j t}(x) \equiv \sum_{\tau=t+1}^{T} \sum_{x_{\tau}=1}^{X} \beta^{\tau-t} \widehat{\psi}_{1 \tau}\left(x_{\tau}\right) \widehat{\kappa}_{\tau-1}\left(x_{\tau} \mid t, x, j, \theta_{L / M L}^{(2)}\right)
$$

5. In T1EV applications:

$$
\widehat{p}_{j t}\left(x, \theta^{(1)}, \theta_{L I M L}^{(2)}\right)=\frac{\exp \left[u_{j t}\left(x, \theta^{(1)}\right)+\widehat{h}_{j t}(x)\right]}{\sum_{k=1}^{J} \exp \left[u_{k t}\left(x, \theta^{(1)}\right)+\widehat{h}_{k t}(x)\right]}
$$

Minimum Distance Estimators (Altug and Miller,1998)

Minimizing the difference between unrestricted and restricted current payoffs

- Another approach is to match up the parametrization of $u_{j t}\left(x_{t}\right)$, denoted by $u_{j t}\left(x_{t}, \theta^{(1)}\right)$, to its representation as closely as possible:
(1) Form the vector function where $\Psi(p, f)$ by stacking:

$$
\begin{aligned}
\Psi_{j t}\left(x_{t}, p, f\right) \equiv & \psi_{1 t}\left(x_{t}\right)-\psi_{j t}\left(x_{t}\right) \\
& +\sum_{\tau=1}^{T-t} \sum_{x=1}^{X} \beta^{\tau} \psi_{1, t+\tau}(x)\left[\begin{array}{l}
\kappa_{k t, \tau-1}\left(x \mid x_{t}\right) \\
-\kappa_{j t, \tau-1}\left(x \mid x_{t}\right)
\end{array}\right]
\end{aligned}
$$

(2) Estimate the reduced form \hat{p} and \widehat{f}.
(3) Minimize the quadratic form to obtain:

$$
\theta_{M D}^{(1)}=\underset{\theta^{(1)} \in \Theta^{(1)}}{\arg \min }\left[u\left(x, \theta^{(1)}\right)-\Psi(\widehat{p}, \widehat{f})\right]^{\prime} \widetilde{W}\left[u\left(x, \theta^{(1)}\right)-\Psi(\widehat{p}, \widehat{f})\right]
$$

where \widetilde{W} is a square $(J-1) T X$ weighting matrix.

- Note $\theta_{M D}^{(1)}$ has a closed form if $u\left(x ; \theta_{0}^{(1)}\right)$ is linear in $\theta_{0}^{(1)}$.

Simulated Moments Estimators

A simulated moments estimator (Hotz, Miller, Sanders and Smith, 1994)

- We could form a Methods of Simulated Moments (MSM) estimator from:
(1) Simulate a lifetime path from $x_{n t_{n}}$ onwards for each j, using \widehat{f} and \widehat{p}.
(2) Obtain estimates of $\widehat{E}\left[\epsilon_{j t} \mid d_{j t}^{o}=1, x_{t}\right]$ from \hat{p}.
(3) Stitch together a simulated lifetime utility outcome from the $j^{t h}$ choice at t_{n} onwards for n, to form $\widehat{v}_{j t}\left(x_{n t_{n}}, \theta^{(1)}, \widehat{f}, \widehat{p}\right)$.
(9) Form the $J-1$ dimensional vector $I_{n}\left(x_{n t_{n}} ; \theta^{(1)}, \widehat{f}, \widehat{p}\right)$ from:

$$
\begin{aligned}
I_{n j}\left(x_{n t_{n}} ; \theta^{(1)}, \widehat{f}, \widehat{p}\right) \equiv & \widehat{v}_{j t_{n}}\left(x_{n t_{n}}, \theta^{(1)}, \widehat{f}, \widehat{p}\right)-\widehat{v}_{J t_{n}}\left(x_{n t_{n}}, \theta^{(1)}, \widehat{f}, \widehat{p}\right) \\
& +\widehat{\psi}_{j t}\left(x_{n t_{n}}\right)-\widehat{\psi}_{J t}\left(x_{n t_{n}}\right)
\end{aligned}
$$

(6) Given a weighting matrix W_{S} and an instrument vector z_{n} minimize:

$$
N^{-1}\left[\sum_{n=1}^{N} z_{n} I_{n}\left(x_{n t_{n}} ; \theta^{(1)}, \widehat{f}, \widehat{p}\right)\right]^{\prime} W_{S}\left[\sum_{n=1}^{N} z_{n} I_{n}\left(x_{n t_{n}} ; \theta^{(1)}, \widehat{f}, \widehat{p}\right)\right]
$$

Simulated Moments Estimators

Notes on this MSM estimator

- In the first step, given the state simulate a choice using \widehat{p}, and simulate the next state using \widehat{f}. In this way generate $\widehat{x}_{n s}$ and $\widehat{d}_{n s} \equiv\left(\widehat{d}_{n 1 s}, \ldots, \widehat{d}_{n J s}\right)$ for all $s \in\left\{t_{n}+1, \ldots, T\right\}$.
- Generating this path does not exploit knowledge of G, only the CCPs.
- In the second step $\widehat{E}\left[\epsilon_{j t} \mid d_{j t}^{o}=1, x_{t}\right] \equiv$

$$
p_{j t}^{-1}\left(x_{t}\right) \int_{\epsilon_{t}} \prod_{k=1}^{J} I\left\{\widehat{\psi}_{j t}\left(x_{t}\right)-\widehat{\psi}_{k t}\left(x_{t}\right) \leq \epsilon_{j t}-\epsilon_{k t}\right\} \epsilon_{j t} g\left(\epsilon_{t}\right) d \epsilon_{t}
$$

- In Step $4 \widehat{v}_{j t}\left(x_{n t_{n}}, \theta^{(1)}, \widehat{f}, \widehat{p}\right)$ is stitched together as:

$$
u_{j t}\left(x_{n t_{n}}, \theta^{(1)}\right)+\sum_{s=t+1}^{T} \sum_{k=1}^{J} \beta^{t-1} 1\left\{\widehat{d}_{n k s}=1\right\}\left\{\begin{array}{l}
u_{k s}\left(\widehat{x}_{n s}, \theta^{(1)}\right) \\
+\widehat{E}\left[\epsilon_{j s} \mid \widehat{x}_{n s}, \widehat{d}_{n j s}=1\right]
\end{array}\right.
$$

- The solution has a closed form if $u_{j t}\left(x, \theta^{(1)}\right)$ is linear in $\theta^{(1)}$.

Bus Engines (Rust,1987)

A renewal problem

- Mr Zurcher maximizes the expected discounted sum of payoffs:

$$
E\left\{\sum_{t=1}^{\infty} \beta^{t-1}\left[d_{t 2}\left(\theta_{1} x_{t}+\theta_{2} s+\epsilon_{t 2}\right)+d_{t 1} \epsilon_{t 1}\right]\right\}
$$

where:

- $d_{t 1}=1$ and $x_{t+1}=1$ if Zurcher replaces the engine
- $d_{t 2}=1$ and bus mileage advances to $x_{t+1}=x_{t}+1$ if he keeps the engine
- buses are also differentiated by a fixed characteristic $s \in\{0,1\}$.
- the choice-specific shocks $\epsilon_{t j}$ are iid Type 1 extreme value (T1EV).
- Define the conditional value function for each choice as:

$$
v_{j}(x, s)= \begin{cases}\beta V(1, s) & \text { if } j=1 \\ \theta_{1} x+\theta_{2} s+\beta V(x+1, s) & \text { if } j=2\end{cases}
$$

where $V(x, s)$ denotes the social surplus function.

Bus Engines

The DGP and the CCPs

- We suppose the data comprises a cross section of N observations of buses $n \in\{1, \ldots, N\}$ reporting their:
- fixed characteristics s_{n},
- engine miles x_{n},
- and maintenance decision $\left(d_{n 1}, d_{n 2}\right)$.
- Let $p_{1}(x, s)$ denote the conditional choice probability (CCP) of replacing the engine given x and s.
- Stationarity and T1EV imply that for all t :

$$
\begin{aligned}
p_{1}(x, s) & \equiv \int_{\epsilon_{t}} d_{1}^{o}\left(x, s, \epsilon_{t}\right) g\left(\epsilon_{t}\right) d \epsilon_{t} \\
& =\int_{\epsilon_{t}} \mathbf{1}\left\{\epsilon_{t 2}-\epsilon_{t 1} \leq v_{1}(x, s)-v_{2}(x, s)\right\} g\left(\epsilon_{t} \mid x_{t}\right) d \epsilon_{t} \\
& =\left\{1+\exp \left[v_{2}(x, s)-v_{1}(x, s)\right]\right\}^{-1}
\end{aligned}
$$

- An ML estimator could be formed off this equation following the steps described above.

Bus Engines

Exploiting the renewal property

- The previous lecture implies that if $\epsilon_{j t}$ is T1EV, then for all (x, s, j) :

$$
V(x, s)=v_{j}(x, s)-\beta \log \left[p_{j}(x, s)\right]+0.57 \ldots
$$

- Therefore the conditional value function of not replacing is:

$$
\begin{aligned}
v_{2}(x, s) & =\theta_{1} x+\theta_{2} s+\beta V(x, s+1) \\
& =\theta_{1} x+\theta_{2} s+\beta\left\{v_{1}(x+1, s)-p_{1}(x+1, s)+0.57 \ldots\right\}
\end{aligned}
$$

- Similarly:

$$
v_{1}(x, s)=\beta V(1, s)=\beta\left\{v_{1}(1, s)-\ln \left[p_{1}(1, s)\right]+0.57\right\} \ldots
$$

- Because bus engine miles is the only factor affecting bus value given s :

$$
v_{1}(x+1, s)=v_{1}(1, s)
$$

Bus Engines

Using CCPs to represent differences in continuation values

- Hence:

$$
v_{2}(x, s)-v_{1}(x, s)=\theta_{1} x+\theta_{2} s+\beta \ln \left[p_{1}(1, s)\right]-\beta \ln \left[p_{1}(x+1, s)\right]
$$

- Therefore:

$$
\begin{aligned}
p_{1}(x, s) & =\frac{1}{1+\exp \left[v_{2}(x, s)-v_{1}(x, s)\right]} \\
& =\frac{1}{1+\exp \left\{\theta_{1} x+\theta_{2} s+\beta \ln \left[\frac{p_{1}(1, s)}{p_{1}(x+1, s)}\right]\right\}}
\end{aligned}
$$

- Intuitively the CCP for current replacement is the CCP for a static model with an offset term.
- The offset term accounts for differences in continuation values using future CCPs that characterize optimal future replacements.

Bus Engines

CCP estimation

- Consider the following CCP estimator:
(1) Form a first stage estimator for $p_{1}(x, s)$ from the relative frequencies:

$$
\hat{p}_{1}(x, s) \equiv \frac{\sum_{n=1}^{N} d_{n 1} I\left(x_{n}=x\right) I\left(s_{n}=s\right)}{\sum_{n=1}^{N} I\left(x_{n}=x\right) I\left(s_{n}=s\right)}
$$

(2) Substitute $\hat{p}_{1}(x, s)$ into the likelihood as incidental parameters to estimate $\left(\theta_{1}, \theta_{2}, \beta\right)$ with a logit:

$$
\frac{d_{n 1}+d_{n 2} \exp \left(\theta_{1} x_{n}+\theta_{2} s_{n}+\beta \ln \left[\frac{\hat{p}_{1}\left(1, s_{n}\right)}{\hat{p}_{1}\left(x_{n}+1, s_{n}\right)}\right]\right.}{1+\exp \left(\theta_{1} x_{n}+\theta_{2} s_{n}+\beta \ln \left[\frac{\hat{p}_{1}\left(1, s_{n}\right)}{\hat{\rho}_{1}\left(x_{n}+1, s_{n}\right)}\right]\right.}
$$

(3) Correct the standard errors for $\left(\theta_{1}, \theta_{2}, \beta\right)$ induced by the first stage estimates of $p_{1}(x, s)$.

- Note that in the second stage $\ln \left[\frac{\hat{\rho}_{1}\left(1, s_{n}\right)}{\hat{\rho}_{1}\left(x_{n}+1, s_{n}\right)}\right]$ enters the logit as an individual specific component of the data, the β coefficient entering in the same way as θ_{1} and θ_{2}.

Monte Carlo Study (Arcidiacono and Miller, 2011)

Modifying the bus engine problem

- Suppose bus type $s \in\{0,1\}$ is equally weighted.
- Two state variables affect wear and tear on the engine:
(1) total accumulated mileage:

$$
x_{1, t+1}=\left\{\begin{array}{l}
\Delta_{t} \text { if } d_{1 t}=1 \\
x_{1 t}+\Delta_{t} \text { if } d_{2 t}=1
\end{array}\right.
$$

(2) a permanent route characteristic for the bus, x_{2}, that systematically affects miles added each period.

- More specifically we assume:
- $\Delta_{t} \in\{0,0.125, \ldots, 24.875,25\}$ is drawn from a discretized truncated exponential distribution, with:

$$
f\left(\Delta_{t} \mid x_{2}\right)=\exp \left[-x_{2}\left(\Delta_{t}-25\right)\right]-\exp \left[-x_{2}\left(\Delta_{t}-24.875\right)\right]
$$

- x_{2} is a multiple 0.01 drawn from a discrete equi-probability distribution between 0.25 and 1.25 .

Monte Carlo Study

Including the age of the bus in panel estimation

- Let $\theta_{0 t}$ denote other bus maintenance costs tied to its vintage.
- This modification renders the optimization problem nonstationary.
- The payoff difference from retaining versus replacing the engine is:

$$
u_{t 2}\left(x_{t 1}, s\right)-u_{t 1}\left(x_{t 1}, s\right) \equiv \theta_{0 t}+\theta_{1} \min \left\{x_{t 1}, 25\right\}+\theta_{2} s
$$

- Denoting $x_{t} \equiv\left(x_{1 t}, x_{2}\right)$, this implies:

$$
\begin{aligned}
v_{t 2}\left(x_{t}, s\right)-v_{t 1}\left(x_{t}, s\right)= & \theta_{0 t}+\theta_{1} \min \left\{x_{t 1}, 25\right\}+\theta_{2} s \\
& +\beta \sum_{\Delta_{t} \in \Lambda}\left\{\ln \left[\frac{p_{1 t}\left(\Delta_{t}, s\right)}{p_{1 t}\left(x_{1 t}+\Delta_{t}, s\right)}\right]\right\} f\left(\Delta_{t} \mid x_{2}\right)
\end{aligned}
$$

Monte Carlo Study

Extract from Table 1 of Arcidiacono and Miller (2011)

Monte Carlo for Optimal Stopping Problem ${ }^{+}$

	DGP (1)	FIML (2)	Time effects CCP CCP (3) (4)	
θ_{0} (Intercept)	2	$\begin{aligned} & 2.0100 \\ & (0.0405) \end{aligned}$	$\begin{aligned} & 1.9911 \\ & (0.0399) \end{aligned}$	
θ_{1} (Mileage)	-0.15	$\begin{aligned} & -0.1488 \\ & (0.0074) \end{aligned}$	$\begin{aligned} & -0.1441 \\ & (0.0098) \end{aligned}$	$\begin{aligned} & -0.1440 \\ & (0.0121) \end{aligned}$
θ_{2} (Type)	1	$\begin{aligned} & 0.9945 \\ & (0.0611) \end{aligned}$	$\begin{aligned} & 0.9726 \\ & (0.0668) \end{aligned}$	$\begin{aligned} & 0.9683 \\ & (0.0636) \end{aligned}$
β (Discount Factor)	0.9	$\begin{aligned} & 0.9102 \\ & (0.0411) \end{aligned}$	$\begin{aligned} & 0.9099 \\ & (0.0554) \end{aligned}$	$\begin{aligned} & 0.9172 \\ & (0.0639) \end{aligned}$
Time (Minutes)		$\begin{aligned} & 130.29 \\ & (19.73) \end{aligned}$	$\begin{aligned} & 0.078 \\ & (0.0041) \end{aligned}$	$\begin{aligned} & 0.079 \\ & (0.0047) \end{aligned}$

+ Mean and standard deviations for fifty simulations. For columns (2) and (3), the observed data consist of 1000 buses for 20 periods. For column (4), the intercept (θ_{0}) is allowed to vary over time and the data consist of 2000 buses for 10 periods.

