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Dynamic Optimization with Conditional Independence
Discrete time with finite choice sets and a finite state space

Dropping the superscript ∗ notation, suppose that each period
t ∈ {1, . . . ,T}, the agent observes the realization (xt , εt ), and
chooses dt to sequentially maximize:

E
{
∑T

τ=t ∑
J
j=1 βτ−1djτ [ujτ(xτ) + εjτ] |xt , εt

}
(1)

where:

An integer T ≤ ∞ denotes the horizon of the optimization problem.
the individual chooses amongst J mutually exclusive actions.
dt ≡ (d1t , . . . , dJt ) where djt = 1 if action j ∈ {1, . . . , J} is taken at
time t and djt = 0 if action j is not taken at t.
xt ∈ {1, . . . ,X} for some finite positive integer X for each t.
εt ≡ (ε1t , . . . , εJt ) where εjt ∈ R for all (j , t).
conditional independence holds, meaning:

gt ,j ,x ,ε (xt+1, εt+1 |xt , εt ) = gt+1 (εt+1 |xt+1) fjt (xt+1 |xt )
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Dynamic Optimization with Conditional Independence
Optimization

Denote the optimal decision rule at t as dot (xt , εt ), with j
th element

dojt (xt , εt ) and define the social surplus function as:

Vt (xt ) ≡ E
{

T

∑
τ=t

J

∑
j=1

βτ−t−1dojτ (xτ, ετ) (ujτ(xτ) + εjτ)

}

The conditional value function, vjt (xt ), is defined as:

vjt (xt ) = ujt (xt ) + β
X

∑
x=1

Vt+1(x)fjt (x |xt )

Integrating dojt (xt , ε) over ε ≡ (ε1, . . . , εJ ) the CCPs are defined by:

pjt (xt ) ≡ E
[
dojt (xt , ε) |xt

]
=
∫
dojt (xt , ε) gt (ε |xt ) dε
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Inversion
Differences in conditional valuation functions

The starting point for our analysis is to define differences in the
conditional valuation functions as:

∆vjkt (x) ≡ vjt (x)− vkt (x)

Although there are J (J − 1) differences all but (J − 1) are linear
combinations of the (J − 1) basis functions.
For example setting the basis functions as:

∆vjt (x) ≡ vjt (x)− vJt (x)

then clearly:
∆vjkt (x) = ∆vjt (x)− ∆vkt (x)

Without loss of generality we focus on this particular basis function.
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Inversion
Each CCP is a mapping of differences in the conditional valuation functions

Using the definition of ∆vjt (x):

pjt (x) ≡
∫
dojt (x , ε) gt (ε |x ) dε

=
∫
I {εk ≤ εj + ∆vjt (x)− ∆vkt (x)∀ k 6= j} gt (ε |x ) dε

=

εj+∆vjt (x )−∆v1t (x )∫
−∞

. . .

εj+∆vjt (x )−∆vJ−1,t (x )∫
−∞

εj+∆vjt (x )∫
−∞

gt (ε |x ) dε

Noting gt (ε |x ) ≡ ∂JGt (ε |x )
/

∂ε1, . . . , ∂εJ , integrate over
(ε1, . . . , , εj−1, εj+1 . . . , εJ ).
Denoting Gjt (ε |x ) ≡ ∂Gt (ε |x )

/
∂εj , yields:

pjt (x) =

∞∫
−∞

Gjt

(
εj + ∆vjt (x)− ∆v1t (x), . . .

. . . , εj , . . . , εj + ∆vjt (x)
|x
)
dεj
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Inversion
There are as many CCPs as there are conditional valuation functions

For any vector J − 1 dimensional vector δ ≡ (δ1, . . . , δJ−1) define:

Qjt (δ, x) ≡
∞∫
−∞

Gjt (εj + δj − δ1, . . . , εj , . . . , εj + δj |x ) dεj

We interpret Qjt (δ, x) as the probability taking action j in a static
random utility model (RUM) where the payoffs are δj + εj and the
probability distribution of disturbances is given by Gt (ε |x ).
It follows from the definition of Qjt (δ, x) that:

0 ≤ Qjt (δ, x) ≤ 1 for all (j , t, δ, x) and
J−1
∑
j=1

Qjt (δ, x) ≤ 1

In particular the previous slide implies that for any given (j , t, x):

pjt (x) =

∞∫
−∞

Gjt

(
εj + ∆vjt (x)− ∆v1t (x),
. . . , εj , . . . , εj + ∆vjt (x)

|x
)
dεj ≡ Qjt (∆vt (x), x)
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Inversion
Proposition 1 of Hotz and Miller (1993)

Theorem (Inversion)

For each (t, δ, x) define:

Qt (δ, x) ≡ (Q1t (δ, x) , . . .QJ−1,t (δ, x))
′

Then the vector function Qt (δ, x) is invertible in δ for each (t, x).

Note that pJt (x) = QJt (∆vt , x) is a linear combination of the other
equations in the system because ∑J

k=1 pk = 1.
Let p ≡ (p1, . . . , pJ−1) where 0 ≤ pj ≤ 1 for all j ∈ {1, . . . , J − 1}
and ∑J−1

j=1 pj ≤ 1. Denote the inverse of Qjt (∆vt , x) by Q−1jt (p, x) .
The inversion theorem implies: ∆v1t (x)

...
∆vJ−1,t (x)

 =
 Q−11t [pt (x), x ]

...
Q−1J−1,t [pt (x), x ]


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Inversion
Using the inversion theorem

In finessing optimization and integration by exploiting conditional
independence, how far can the three applications described in the
previous two lectures be extended?

We use the Inversion Theorem to:
1 provide empirically tractable representations of the conditional value
functions.

2 analyze identification in dynamic discrete choice models.
3 provide convenient parametric forms for the density of εt that
generalize the Type 1 Extreme Value distribution.

4 generalize the renewal and terminal state properties exploited in the
first two examples, by obtaining restrictions on the state variable
transitions used to implement CCP estimators.

5 introduce new methods for incorporating unobserved state variables.
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Corollaries of the Inversion Theorem
Identifying the policy function

From the definition of the optimal decision rule, and then appealing
to the inversion theorem:

dojt (xt , εt ) = ∏J
k=1 1 {εkt − εjt ≤ vjt (x)− vkt (x)}

= ∏J
k=1 1

{
εkt − εjt ≤

vjt (x)− vJt (xt )
− [vkt (x)− vJt (xt )]

}
= ∏J

k=1 1 {εkt − εjt ≤ ∆vjt (x)− ∆vkt (x)}

= ∏J
k=1 1

{
εkt − εjt ≤ Q−1jt [pt (x), x ]−Q−1kt [pt (x), x ]

}
If Gt (ε |x ) is known and the data generating process (DGP) is
(xt , dt ), then pt (x) and hence dot (xt , εt ) are identified.
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Corollaries of the Inversion Theorem
Definition of the conditional value function correction

Define the conditional value function correction as:

ψjt (x) ≡ Vt (x)− vjt (x)

In stationary settings, we drop the t subscript and write:

ψj (x) ≡ V (x)− vj (x)

Suppose that instead of taking the optimal action she committed to
taking action j instead. Then the expected lifetime utility would be:

vjt (xt ) + Et [εjt |xt ]

so committing to j before εt is revealed entails a loss of:

Vt (xt )− vjt (xt )− Et [εjt |xt ] = ψjt (x)− Et [εjt |xt ]

For example if Et [εt |xt ] = 0, the loss simplifies to ψjt (x).
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Corollaries of the Inversion Theorem
Identifying the conditional value function correction

From their respective definitions:

Vt (x)− vit (x)

=
J

∑
j=1

{
pjt (x) [vjt (x)− vit (x)] +

∫
εjtdojt (xt , εt ) gt (εt |x ) dεt

}
But:

vjt (x)− vit (x) = Q−1jt [pt (x), x ]−Q−1it [pt (x), x ]
and ∫

εjtdojt (x , εt ) g (εt |x ) dεt

=
∫ J

∏
k=1

1
{

εkt − εjt
≤ Q−1jt [pt (x), x ]−Q−1kt [pt (x), x ]

}
εjtgt (εt |x ) dεt

Therefore ψit (x) ≡ Vt (x)− vit (x) is identified if Gt (ε |x ) is known
and (xt , dt ) is the DGP.
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Conditional Valuation Function Representation
Telescoping one period forward

From its definition:

vjt (xt ) = ujt (xt ) + β
X

∑
x=1

Vt+1(x)fjt (xt+1|xt )

Substituting for Vt+1(xt+1) using conditional value function
correction we obtain for any k:

vjt (xt ) = ujt (xt ) + β
X

∑
x=1

[
vk ,t+1(x) + ψk ,t+1(x)

]
fjt (x |xt )

We could repeat this procedure ad infinitum, substituting in for
vk ,t+1(x) by using the definition for ψkt (x).
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Conditional Valuation Function Representation
Recursively defining the distribution of future state variables

To formalize this idea, consider a random sequence of weights from t
to T which begins with ωjt (xt , j) = 1.
For periods τ ∈ {t + 1, . . . ,T}, the choice sequence maps xτ and the
initial choice j into

ωτ(xτ, j) ≡ {ω1τ(xτ, j), . . . ,ωJτ(xτ, j)}
where ωkτ(xτ, j) may be negative or exceed one but:

J

∑
k=1

ωkτ(xτ, j) = 1

.
The weight of state xτ+1 conditional on following the choices in the
sequence is recursively defined by κt (xt+1|xt , j) ≡ fjt (xt+1|xt ) and for
τ = t + 1, . . . ,T :

κτ(xτ+1|xt , j) ≡
X

∑
xτ=1

J

∑
k=1

ωkτ (xτ, j) fkτ(xτ+1|xτ)κτ−1(xτ|xt , j)
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Framework
Theorem 1 of Arcidiacono and Miller (2011)

Theorem (Representation)

For any state xt ∈ {1, . . . ,X}, choice j ∈ {1, . . . , J} and weights
ωτ(xτ, j) defined for periods τ ∈ {t, . . . ,T}:

vjt (xt ) = ujt (xt )

+
T

∑
τ=t+1

J

∑
k=1

X

∑
x=1

βτ−t [ukτ(x) + ψk [pτ(x)]]ωkτ(x , j)κτ−1(x |xt , j)

The theorem yields an alternative expression for vjt (xt ) that dispenses
with recursive maximization.

Intuitively, the individuals have already solved their optimization
problem, so their decisions, as reflected in their CCPs, are informative
of their value functions.
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Generalized Extreme Values
Definition

Are there tractable distributions Gt (ε |x ) aside from the Type 1
Extreme Value?

To keep the approach operational we have to compute ψk (p) for at
least some k.

Suppose ε is drawn from the GEV distribution function:

G (ε1, ε2, . . . , εJ ) ≡ exp [−H (exp[−ε1], exp[−ε2], . . . , exp[−εJ ])]

where H (Y1,Y2, . . . ,YJ ) satisfies the following properties:
1 H (Y1,Y2, . . . ,YJ ) is nonnegative, real valued, and homogeneous of
degree one;

2 limH (Y1,Y2, . . . ,YJ )→ ∞ as Yj → ∞ for all j ∈ {1, . . . , J};
3 for any distinct (i1, i2, . . . , ir ) the cross derivative

∂H (Y1,Y2, . . . ,YJ ) /∂Yi1 ,Yi2 , . . . ,Yir is nonnegative for r odd and
nonpositive for r even.
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Generalized Extreme Values
Extended Nested Logit Distributions

Suppose G (ε) factors into two independent distributions, one a
nested logit, and the other any GEV distribution.

Let J denote the set of choices in the nest and denote the other
distribution by G0 (Y1,Y2, . . . ,YK ) let K denote the number of
choices that are outside the nest.

Then:

G (ε) ≡ G0 (ε1, . . . , εK ) exp

[
−
(

∑
j∈J

exp [−εj/σ]

)σ]

The correlation of the errors within the nest is given by σ ∈ [0, 1] and
errors within the nest are uncorrelated with errors outside the nest.
When σ = 1, the errors are uncorrelated within the nest, and when
σ = 0 they are perfectly correlated.
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Generalized Extreme Values
Lemma 2 of Arcidiacono and Miller (2011)

Define φj (Y ) as a mapping into the unit interval where

φj (Y ) = YjHj (Y1, . . . ,YJ )
/
H (Y1, . . . ,YJ )

Since Hj (Y1, . . . ,YJ ) and H (Y1, . . . ,YJ ) are homogeneous of
degree zero and one respectively, φj (Y ) is a probability, because

φj (Y ) ≥ 0 and ∑J
j=1 φj (Y ) = 1.

Lemma (GEV correction factor)
When εt is drawn from a GEV distribution, the inverse function of
φ(Y ) ≡ (φ2(Y ), . . . φJ (Y )) exists, which we now denote by φ−1(p), and:

ψj (p) = lnH
[
1, φ−12 (p), . . . , φ−1J (p)

]
− ln φ−1j (p) + γ
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Generalized Extreme Values
Correction factor for extended nested logit

Lemma
For the nested logit G (εt ) defined above:

ψj (p) = γ− σ ln(pj )− (1− σ) ln

(
∑
k∈J

pk

)

Note that ψj (p) only depends on the conditional choice probabilities
for choices that are in the nest: the expression is the same no matter
how many choices are outside the nest or how those choices are
correlated.

Hence, ψj (p) will only depend on pj ′ if εjt and εj ′t are correlated.
When σ = 1, εjt is independent of all other errors and ψj (p) only
depends on pj .
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Identifying the Primitives
Identifying assumptions and data generating process

The optimization model is fully characterized by the time horizon, the
utility flows, the discount factor, the transition matrix of the observed
state variables, and the distribution of the unobserved variables,
summarized with the notation (T , β, f , g , u) .

The data comprise observations for a real or synthetic panel on the
observed part of the state variable, xt , and decision outcomes, dt .

In our analysis, let S ≤ T denote the last date for which data is
available (for a real or synthetic cohort).

Following most of the empirical work in this area we consider
identification when (T , β, f , g) are assumed to be known.

Thus the goal is to identify u from (xt , dt ) when (T , β, f , g) is known.
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Identifying the Primitives
Observational Equivalence

It is widely believed that u is only identified relative to one choice per
period for each state.

Can we say more than that?

For each (x , t) let l (x , t) ∈ {1, . . . , J} denote any arbitrarily defined
normalizing action and ct (x) ∈ R its associated benchmark flow
utility, meaning u∗l(x ,t),t (x) ≡ ct (x).

Assume {ct (x)}Tt=1 is bounded for each x ∈ {1, . . . ,X}.
Let κ∗τ(xτ+1|xt , j) denote the probability distribution of xτ+1, given a
state of xt taking action j at t, and then repeatedly taking the
normalized action from period t + 1 through to period τ.

Thus κ∗t (xt+1|xt , j) ≡ fjt (xt+1|xt ) and for τ ∈ {t + 1, . . . ,T}:

κ∗τ(xτ+1|xt , j) ≡∑X
x=1 fl(x ,τ),τ(xτ+1|x)κ∗τ−1(x |xt , j) (2)
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Theorem (Observational Equivalence, Arcidiacono and Miller, 2020)

For each R ∈ {1, 2, . . .}, define for all x ∈ {1, . . . ,X}, j ∈ {1, . . . , J} and
t ∈ {1, . . . ,R}:

u∗jR (x) ≡ ujR (x) + cR (x)− ul(x ,R ),R (x) (3)

u∗jt (x) ≡ ujt (x) + ct (x)− ul(x ,t),t (x) (4)

+
R

∑
τ=t+1

X

∑
x ′=1

βτ−t
{ [

cτ(x ′)− ul(x ,τ),τ(x ′)
]
×[

κ∗τ−1(x
′|xt , l(x , t))− κ∗τ−1(x

′|xt , j)
] }

(T , β, f , g , u∗), is observationally equivalent to (T , β, f , g , u) in the limit
of R → T. Conversely suppose (T , β, f , g , u∗) is observationally
equivalent to (T , β, f , g , u). For each date and state select any action
l (x , t) ∈ {1, . . . , J} with payoff u∗l(x ,t),t (x) ≡ ct (x) ∈ R. Then (3) and
(4) hold for all (t, x , j).
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Corollary

Suppose ujt (x) = uj (x) and let uj ≡ (uj (1), . . . , uj (X ))
′. Similarly

suppose fjt (xt+1|xt ) = fj (xt+1|xt ) for all t ∈ {1, 2, . . .}. Denote by l (x)
the normalizing action for that state, with true payoff vector

ul =
(
ul(1)(1), . . . , ul(X )(X )

)′
, and assume c (x) ≡ (c(1), . . . , c(X ))′ is

bounded for each x ∈ {1, 2, . . .}. Then (4) reduces to:

u∗j = uj + [I − βFj ] [I − βFl ]
−1 (c − ul ) (5)

where u∗j ≡
(
u∗j (1), . . . , u∗j (X )

)′
, the X dimensional identity matrix is

denoted by I , and:

Fj ≡

 fj (1|1) . . . fj (X |1)
...

. . .
...

fj (1|X ) . . . fj (X |X )

 , Fl ≡

 fl(1)(1|1) . . . fl(1)(X |1)
...

. . .
...

fl(X )(1|X ) . . . fl(X )(X |X )


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Identifying the Primitives
Observational Equivalence

A common normalization is to let l (x , τ) = 1 and ct (x) = 0 for all
(t, x), normalizing the payoff from the first choice to zero by defining
u∗1t (x) ≡ 0, and interpreting the payoffs for other actions as net of, or
relative to, the current payoff for the first choice.
The theorem shows that with the important exception of the static
model (when T = 1), this interpretation is misleading.
Define κτ(xτ+1|xt , j) by setting fl(x ,τ),τ(xτ+1|x) = f1τ(xτ+1|x) in (2),
if T < ∞ then (3) and (4) simplify to:

u∗jT (x) = ujT (x)− u1T (x)
and:

u∗jt (x) = ujt (x)− u1t (x)

−
T

∑
τ=t+1

X

∑
xτ=1

βτ−tu1τ(xτ) [κτ−1(xτ|xt , 1)− κτ−1(xτ|xt , j)]
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Identifying the Primitives
Identification off long panels (Arcidiacono and Miller,2020)

Theorem (Identification)

For all j , t, and x:

ujt (x) = u1t (x) + ψ1t (x)− ψjt (x) (6)

+
T

∑
τ=t+1

X

∑
xτ=1

βτ−t
{
[u1τ(xτ) + ψ1t (xτ)]×
[κτ−1(xτ|x , 1)− κτ−1(xτ|x , j)]

}

In stationary models, define Ψj ≡
[
ψj (1) . . . ψj (X )

]′
, and for all j :

uj = Ψ1 −Ψj − u1 + β (F1 − Fj ) [I − βF1]
−1 (Ψ1 + u1) (7)

If (T , β, f , g) is known, and if a payoff, say the first, is also known for
every state and time, then u is identified.

Miller (Tilburg University) Structural Econometrics Masterclass 2 November 2023 24 / 25



Identifying the Primitives
Proving the theorem

Specialize the mixed decision rule by always taking the first action to
obtain:

vjt (x) = ujt (x)

+
T

∑
τ=t+1

X

∑
xτ=1

βτ−t [u1τ(xτ) + ψ1τ (xτ)] κτ−1(xτ|x , j)

Subtract from the expression above the corresponding expression for
v1t (xt ) yielding:

vjt (x)− ujt (x)− [v1t (x)− u1t (x)]
= ψ1t (x)− ψjt (x)− ujt (x) + u1t (x)

=
T

∑
τ=t+1

X

∑
xτ=1

βτ−t
{
[u1τ(xτ) + ψ1t (xτ)]×
[κτ−1(xτ|x , 1)− κτ−1(xτ|x , j)]

}
The theorem follows from rearrangement.
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