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Introduction
Website and themes

The lecture material for this course is based on 28 sessions found at:

http://comlabgames.com/structuraleconometrics/

The data for problems in dynamic discrete choice typically comprise a
sample of individuals or firms with records on some of their:

background characteristics
choices
outcomes from those choices.

Suppose our model generated the data.

What are the challenges to estimation and testing?
1 The choices and outcomes of economic models are typically nonlinear
in the underlying parameters of the model we wish to estimate.

2 The data variables on background, choices and outcomes might be an
incomplete description about what is relevant to the model.
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A Dynamic Discrete Choice Model
Choices

Each period t ∈ {1, 2, . . . ,T} for T ≤ ∞, an individual chooses
among J mutually exclusive actions.

Let djt equal one if action j ∈ {1, . . . , J} is taken at time t and zero
otherwise:

djt ∈ {0, 1}
J

∑
j=1
djt = 1

At an abstract level assuming that choices are mutually exclusive is
innocuous, because two combinations of choices sharing some
features but not others can be interpreted as two different choices.

For example in a female labor supply and fertility model, suppose:

j ∈ {(work, no birth) , (work, birth) , (no work, no birth) , (no work, birth)}
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A Dynamic Discrete Choice Model
Information and states

Suppose that actions taken at time t can potentially depend on the
state zt ∈ Z .
For Z finite denote by fjt (zt+1|zt ), the probability of zt+1 occurring in
period t + 1 when action j is taken at time t.

For example in the example above, suppose zt = (wt , kt ) where:

kt ∈ {0, 1, . . .} are the number of births before t.
wt ≡ d1,t−1 + d2,t−1 is her wage in period t.

Thus wt = 1 if the female worked in period t − 1, and wt = 0
otherwise.

With up to 5 offspring, 3 levels of experience, the number of states
including age (say 50 years) is 750.

Adding in 4 levels of education (less than high school, high school,
some college and college graduate) and 3 racial categories, increases
this number to 9000.
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A Dynamic Discrete Choice Model
Large but sparse matrices

When Z is finite there is a Z × Z transition matrix for each (j , t).
In many applications the matrices are sparse.
In the example above they have 9, 0002 = 81 million cells.
However households can only increase the number of kids one at time.
They can only increase or decrease their work experience by one unit
at most.
Hence there are at most six cells they can move from (wt , kt ):{

(wt , kt ) , (wt , kt + 1) , (wt + 1, kt ) ,
(wt + 1, kt + 1) , (wt − 1, kt ) , (wt − 1, kt + 1)

}
Therefore a transition matrix has at most 54, 000 nonzero elements,
and all the nonzero elements are one.
Given a deterministic sequence of actions sequentially taken over S
periods, we can form the S period transition matrix by producting the
one period transitions.
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A Dynamic Discrete Choice Model
More on information and states

If Z is a Euclidean space fjt (zt+1|zt ) is the probability (density
function) of zt+1 occurring in period t + 1 when j is picked at time t.

With almost identical notation we could model zt ∈ Zt and in this
way generalize from states of the world to histories, or information
known at t, or t-measurable events.

For example in a health application we might define zt ≡ {hs}t−1s=1 as
a medical record with hs ∈ {healthy at s, sick at s}.
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A Dynamic Discrete Choice Model
Preferences and expected utility

The individual’s current period payoff from choosing j at time t is
determined by zt , which is revealed to the individual at the beginning
of the period t.
The current period payoff at time t from taking action j is ujt (zt ).
Given choices (d1t , . . . , dJt ) in each period t ∈ {1, 2, . . . ,T} and
each state zt ∈ Z the individual’s expected utility is:

E

{
T

∑
t=1

J

∑
j=1

βt−1djtujt (zt ) |z1

}

where β ∈ (0, 1) is the subjective discount factor, and at each period
t the expectation is taken over z2, . . . , zT .
Formally, β is redundant if u is subscripted by t; we typically include a
geometric discount factor so that infinite sums of utility are bounded,
and the optimization problem is well posed.
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Characterizing the Solution
Value Function

Write the optimal decision at period t as a decision rule denoted by
dot (zt ) formed from its elements dojt (zt ).

Let Vt (zt ) denote the value function in period t, conditional on
behaving according to the optimal decision rule:

Vt (zt ) ≡ E
[
T

∑
τ=t

J

∑
j=1

βτ−tdojτ (zτ) ujτ(zτ) |zt

]

In terms of period t + 1:

βVt+1(zt+1) ≡ βE

{
T

∑
τ=t+1

J

∑
j=1

βτ−t−1dojτ (zτ) ujτ(zτ) |zt+1

}
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Characterizing the Solution
Recursive Representation

Appealing to Bellman’s (1958) principle we obtain, when Z is finite:

Vt (zt ) =
J

∑
j=1
dojtujt (zt )

+
J

∑
j=1
dojt ∑

z∈Z
E

[
T

∑
τ=t+1

J

∑
j=1

βτ−tdojτ (zτ) ujτ(zτ) |z
]
fjt (z |zt )

=
J

∑
j=1
dojt

[
ujt (zt ) + β ∑

z∈Z
Vt+1(z)fjt (z |zt )

]

A similar expression holds when Z is Euclidean using an integral.
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Characterizing the Solution
Optimization

To compute the optimum for T finite, we first solve a static problem
in the last period to obtain doT (zT ) for all zT ∈ Z .
Applying backwards induction i ∈ {1, . . . , J} is chosen to maximize:

uit (zt ) + E

{
T

∑
τ=t+1

J

∑
j=1

βτ−t−1dojτ (zτ) ujτ(zτ) |zt , dit = 1
}

In the stationary infinite horizon case we assume ujt (z) ≡ uj (z) and
that uj (z) < ∞ for all (j , z).

Consequently expected utility each period is bounded and the
contraction mapping theorem applies, proving dot (z)→ do (z) for
large T .
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Inference
Estimating a model when all heterogeneity is observed

Let vjt (zt ) denote the flow payoff of any action j ∈ {1, . . . , J} plus
the expected future utility of behaving optimally from period t + 1 on:

vjt (zt ) ≡ ujt (zt ) + β ∑
z∈Z

Vt+1(z)fjt (z |zt )

By definition:

dojt (zt ) ≡ I {vjt (zt ) ≥ vkt (zt )∀ k}
Suppose we observe the states znt and decisions dnt ≡ (dn1t , . . . , dnJt )
of individuals n ∈ {1, . . . ,N} over time periods t ∈ {1, . . . ,T} .
Could we use such data to infer the primitives of the model:

1 A consistent estimator of fjt (zt+1 |zt ) can be obtained from the
proportion of observations in the (t, j , zt ) cell transitioning to zt+1.

2 There are (J − 1)∑Nn=1 I {znt = zt} inequalities relating pairs of
mappings vjt (zt ) and vkt (zt ) for each observation on dnt at (t, zt ).

3 Can we recursively derive the values of ujt (zt ) from the vjt (zt ) values?
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Inference
Why unobserved heterogeneity is introduced into data analysis

Note that if two people in the data set with the same (t, zt ) made
different decisions, say j and k, then vjt (zt ) = vkt (zt ).

There are two potential problems with taking this approach:
1 In a large data set it is easy to imagine that for every choice
j ∈ {1, . . . , J} and every (t, zt ) at least one sampled person n sets
dnjt = 1. If so, we would infer the population was indifferent between
all the choices. Hence the model would lack empirical content because
no behavior can be ruled out.

2 This approach does not make use of the information that some choices
are more likely than others. The sample proportions taking different
choices at (t, zt ) might vary, some choices being observed often, others
infrequently.

So treating all heterogeneity as observed, and trying to predict the
decisions of individuals, is not a promising approach to analyzing data.
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Inference
Unobserved heterogeneity

A more modest objective is to predict the probability distribution of
choices margined over the unobserved heterogeneity.
This essentially obliterates differences between macroeconomics and
microeconomics.
We now assume the states can be partitioned into those which are
observed, xt , and those that are not, εt .
Define zt ≡ (xt , εt ) and the current payoff from taking action j at t
given (xt , εt ) by u∗jt (xt ) + εjt .
We might interpret u∗jt (xt ) as E [ujt (zt ) |xt ] when only the j th option
is offered (so there is no choice).

To satisfy a transversality condition, assume
{
u∗jt (x)

}T
t=1

is a

bounded sequence for each (j , x) ∈ {1, . . . , J} × {1, . . . ,X}, and so
is: {∫

max {|ε1t | , . . . , |εJt |} gt (εt |xt ) dεt

}T
t=1
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Inference
Data generating process

Denote the mixed probability (density) of the pair (xt+1, εt+1),
conditional on (xt , εt ) and the optimal action is j , as:

Hjt (xt+1, εt+1 |xt , εt ) ≡ dojt (xt , εt ) fjt (xt+1, εt+1 |xt , εt )

The probability of {d1, x2, . . . , dT−1, xT , dT } given x1 is:

Pr {d1, x2, . . . , dT−1, xT , dT |x1 } =

∫
εT

. . .
∫
ε1

 g (ε1 |x1 )
J
∑
j=1
djT dojT (xT , εT )×

T−1
∏
t=1

J
∑
j=1
djtHjt (xt+1, εt+1 |xt , εt )

 dε1 . . . dεT

where g (ε1 |x1 ) is the density of ε1 conditional on x1.
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Inference
Maximum Likelihood Estimation

Suppose the data consist of N independent and identically distributed
draws from the string of random variables (X1,D1, . . . ,XT ,DT ).

Observation n ∈ {1, . . . ,N} is given by
{
x (n)1 , d (n)1 , . . . , x (n)T , d (n)T

}
.

Let θ ∈ Θ uniquely index a specification of ujt (zt ), fjt (zt+1|zt ) and β.

Conditional on x (n)1 , suppose some θ0 ∈ Θ generated{
d (n)1 , x (n)2 , . . . , , d (n)T

}N
n=1

for all n ∈ {1, 2, . . .}.
The maximum likelihood (ML) estimator selects θ ∈ Θ to maximize
the joint probability of the observed occurrences conditional on the
initial conditions:

θML ≡ argmax
θ∈Θ

{
N−1

N

∑
n=1

log
(
Pr
{
d (n)1 , x (n)2 , . . . , x (n)T , d (n)T

∣∣∣x (n)1 ; θ
})}
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Inference
Identification and the properties of the ML estimator

This model is point identified if and only if (iff) θ0 is the unique
solution when θ ∈ Θ is chosen to maximize:∫

x (n)1
log
(
Pr
{
d (n)1 , x (n)2 , . . . , x (n)T , d (n)T

∣∣∣x (n)1 ; θ
})
dF
(
x (n)1

)
If the model is point identified, θML is

√
N consistent, asymptotically

normal, and asymptotically effi cient:
1 a model is point identified if no other model in the Θ set of models has
the same data generating process.

2 an estimator of an identified model is consistent if it converges to θ0 in
some probabilistic sense as N increases without bound.

3 the rate of convergence, 1/2 in this case, is the greatest α leaving the
limit of Nα (θML − θ0) bounded in some probabilistic sense.

4 asymptotic normality means the limiting distribution (again as N
increases without bound), of

√
N (θML − θ0) is normal.

5 asymptotic effi ciency refers to the lowest asymptotic variance of all
consistent estimators with the same rate of convergence.
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Separable Transitions in the Observed Variables
A simplification

The multiple integration is computationally demanding.

We could assume that for all (t, j , xt , εt ) the transition of the
observed variables does not depend on the unobserved variables:

Fjt (xt+1 |xt , εt ; θ) = Fjt (xt+1 |xt ; θ)

Note Fjt (xt+1 |xt ) is identified for each (t, j) from the transitions, so
there is no conceptual reason for parameterizing this distribution.

The ML estimator maximizes the same criterion function but
Hjt (xn,t+1, εt+1 |xnt , εt ; θ) simplifies to:

Hjt (xt+1, εt+1 |xt , εt ; θ) ≡
dojt (xt , εt ; θ) fjt (xt+1 |xt ; θ) fj .t+1 (εt+1 |xt+1, xt , εt ; θ)
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Separable Transitions in the Observed Variables
Exploiting separability in estimation

,

Instead of jointly estimating the parameters, we could use a two stage
estimator to reduce computation costs:

1 Estimate Fjt (xt+1 |xt ; θ) with a cell estimator, a parametric function,
or a nonparametric estimator, with F̂jt (xt+1 |xt ; θ).

2 Define:

Ĥjt (xt+1, εt+1 |xt , εt ; θ) ≡
dojt (xt , εt ; θ) f̂jt (xt+1 |xt ; θ) fj .t+1 (εt+1 |xt+1, xt , εt ; θ)

3 Choose θ to maximize the product over n of:

∫
εT

. . .
∫
ε1


g (ε1 |x1 )

J
∑
j=1

djT dojT (xT , εT )×
T−1
∏
t=1

J
∑
j=1

djt Ĥjt (xt+1, εt+1 |xt , εt )

 dε1 . . . dεT

4 Correct standard errors induced at the first stage of estimation.
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Conditional Independence
Conditional independence defined

Separable transitions do not, however, free us from:
1 the curse of multiple integration.
2 numerical optimization to obtain the value function.

Suppose we assume in addition that εt+1, conditional on xt+1, is
independent of xt (plausible) and εt (questionable).

Conditional independence embodies both assumptions:

Fjt (xt+1 |xt , εt ) = Fjt (xt+1 |xt ; θ)
Fj ,t+1 (εt+1 |xt+1, xt , εt ) = Gt+1 (εt+1 |xt+1 ; θ)

Conditional independence implies:

Fjt (xt+1, εt+1 |xt , εt ) = Fjt (xt+1 |xt ; θ)Gt+1 (εt+1 |xt+1 ; θ)
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Conditional Independence
Simplifying expressions within the likelihood

Conditional independence implies:

∑J
j=1 dnjT d

o
jT (xnT , εT ; θ) g1 (ε1 |xn1 ; θ)

×∏T−1
t=1 Ht (xt+1, εt+1 |xt , εt ; θ)

= ∑J
j=1 dnTjd

o
jT (xnT , εT ; θ) g1 (ε1 |xn1 ; θ)

×∏T−1
t=1 ∑J

j=1

[
djtdojt (xt , εt ; θ) fjt (xt+1 |xt ; θ) gt+1 (εt+1 |xt+1 ; θ)

]
= ∏T−1

t=1 ∑J
j=1 djt fjt (xt+1 |xt ; θ)

×∏T
t=1 ∑J

j=1 djtd
o
jt (xt , εt ; θ) gt (εt |xt ; θ)
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Conditional Independence

Hence the contribution of n ∈ {1, . . . ,N} to the likelihood is:

∫
εT ...ε1

 g1 (ε1 |xn1 ; θ)
J
∑
j=1
dnjT dojT (xnT , εT ; θ)×

T−1
∏
t=1

J
∑
j=1
dnjtHjt (xn,t+1, εt+1 |xnt , εt ; θ)

 dε1 . . . dεT

=
∫

εT ...ε1


T−1
∏
t=1

J
∑
j=1
dnjt fjt (xn,t+1 |xnt )×

T
∏
t=1

J
∑
j=1
dnjtdojt (xnt , εt ; θ) gt (εt |xnt ; θ)

 dε1 . . . dεT

= ∏T−1
t=1 ∑J

j=1 dnjt fjt (xn,t+1 |xnt )

×∏T
t=1

∫
εt

∑J
j=1 dnjtd

o
jt (xnt , εt ; θ) gt (εt |xnt ; θ) dεt
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Conditional Independence
Conditional choice probabilities defined

Under conditional independence, we define for each (t, xt ) the
conditional choice probability (CCP) for action j as:

ptj (xt ) ≡
∫

εt
dotj (xt , εt ) gt (εt |xt ) dεt

= E
[
dotj (xt , εt ) |xt

]
=

∫
εt

J

∏
k=1

I {vtk (xt , εt ) ≤ vtj (xt , εt )} gt (εt |xt ) dεt

Using this notation, the log likelihood can now be compactly
expressed as:

N

∑
n=1

T−1
∑
t=1

J

∑
j=1
dntj ln [ftj (xn,t+1 |xnt ; θ)]

+
N

∑
n=1

T

∑
t=1

J

∑
j=1
dntj ln ptj (xt ; θ)
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Conditional Independence
Conditional value function

Conditional independence implies that vjt (xt , εt ) only depends on εt
through utj (xt , εt ) because:

vjt (xt , εt ) = ujt (xt , εt )

+β
∫
ε

∫
xt+1

{
Vt+1(xt+1, ε)×
ftj (xt+1 |xt ) gt+1 (ε |xt+1 ) dxt+1dε

}

Given conditional independence, define the conditional value function
as:

v ∗tj (xt ) ≡ u∗tj (xt ) + β
∫
ε

∫
xt+1

{
Vt+1(xt+1, ε)×
ftj (xt+1 |xt ) gt+1 (ε |xt+1 ) dxt+1dε

}
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Conditional Independence
Conditional choice probabilities

Similarly define pjt (xt ), the conditional choice probability (CCP) for
each (j , t), by integrating over (ε∗t1, . . . , ε∗tJ ) in the regions where
dojt (xnt , εt ) = 1, namely:

εtk − εtj ≤ v ∗tj (xt )− v ∗tk (xt )

hold for all k ∈ {1, . . . , J}:

pjt (xt ) =
∫

εt

J

∏
k=1

1 {vtk (xnt , εt ) ≤ vtj (xnt , εt )} gt (εt |xt ) dεt

=
∫

εt

J

∏
k=1

I
{

ε∗tk − ε∗tj ≤ v ∗tj (xnt )− v ∗tk (xnt )
}
g ∗t (ε

∗
t |xt ) dε∗t
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Conditional Independence
Connection with static models

Suppose we only had data on the last period T , and wished to
estimate the preferences determining choices in T .

By definition this is a static problem in which v ∗jT (xT ) ≡ u∗jT (xT ).
For example to the probability of observing the J th choice is:

pJT (xT ) ≡
∫ εJT+u∗JT (xT )
−u∗1T (xT )

−∞
. . .
∫ εJT+u∗JT (xT )
−u∗J−1,T (xT )

−∞

∫ ∞

−∞
gT (ε

∗
T |xT ) dε∗T

The main difference between a estimating a static discrete choice
model using ML versus its dynamic analogue satisfying conditional
independence using ML is that parameterizations of v ∗jt (xt ) based on
u∗jt (xt ) do not have a closed form, but must be computed numerically.

For example if εjt is Type 1 Extreme Value (T1EV), then we would
replace "u∗jt (xt )" with "v

∗
jt (xt )" in a logit.
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