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Unrestricted Estimation
Data and outside knowledge

Recall the social surplus function is:

Vt (xt ) ≡ E
{

T

∑
τ=t

J

∑
j=1

βτ−t−1dojτ (xτ, ετ) (ujτ(xτ) + εjτ)

}

where dojτ (xτ, ετ) is the optimal choice.

Suppose the data comes from a panel and assume we know:
1 the discount factor β
2 the distribution of disturbances Gt (ε |x )
3 u1t (x) (or more generally one of the payoffs for each state and time).
4 u1t (x) = 0 (for notational convenience).
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Unrestricted Estimation
The likelihood

Consider a panel:

of independently drawn individuals n ∈ {1, . . . ,N}
each with history t ∈ {1, . . . ,T}
and data on their state variables, xnt
and decisions dnt = (dn1t , . . . , dnJt ).

The joint probability distribution of the decisions and outcomes is:

N

∏
n=1

T

∏
t=1

(
J

∑
j=1

X

∑
x ′=1

dnjt1
{
xn,t+1 = x ′

}
pjt (x)fjt (x ′|x)

)

Taking logs yields:

N

∑
n=1

T

∑
t=1

J

∑
j=1
dnjt

{
log [pjt (xnt )] +

X

∑
x=1

1 {xn,t+1 = x} log [fjt (x |xnt )]
}
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Unrestricted Estimation
The reduced form

Note the choice probabilities are additively separable from the
transition probabilities in the formula for the joint distribution of
decisions and outcomes.
Hence the estimation of the joint likelihood splits:

One piece deals with the choice probabilities conditional on the state.
The other deals with the transition conditional on the choice and state.

Maximizing each piece separately with respect to fj (x ′|x) and pt (xnt )
gives the unrestricted estimators:

f̂jt
(
x ′ |x

)
=

∑N
n=1 1 {xnt = x , dnjt = 1, xn,t+1 = x ′}

∑N
n=1 1 {xnt = x , dnjt = 1}

and:

p̂jt (x) =
∑N
n=1 1 {xnt = x , dnjt = 1}

∑N
n=1 1 {xnt = x}

(1)

Robert A. Miller (CMU UCL & Leverhulme) (Leverhulme Visiting Professor University College London & Richard M. Cyert and Morris DeGroot Professor of Economics and Statistics Carnegie Mellon University)National University Singapore May 2023 4 / 22



Unrestricted Estimation
Estimating an intermediate probability distribution

Let κτ(xτ+1|t, xt , j) denote the probability of reaching xτ+1 at τ + 1
from xt by following action j at t and then always choosing the first
action:

κτ(xτ+1|t, xt , j) ≡
{
fjt (xt+1|xt ) τ = t
∑X
x=1 f1τ(xτ+1|x)κτ−1(x |t, xt , j) τ = t + 1, . . .

(2)

Thus we can recursively estimate κτ(xτ+1|t, xt , j) with:

κ̂τ(xτ+1|t, xt , j) ≡
{
f̂jt (xt+1|xt ) τ = t
∑X
x=1 f̂1τ(xτ+1|x)κ̂τ−1(x |t, xt , j) τ = t + 1, . . .

Similarly we estimate ψjt (xt ) with ψ̂jt (xt ) using the p̂jt (x) estimates
of the CCPs.
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Unrestricted Estimation
Utility parameter estimates

From the previous lecture:

ujt (xt ) = ψ1t (xt )− ψjt (xt )

+
T−t
∑
τ=1

X

∑
x=1

βτ−tψ1,t+τ(x) [κt1,τ−1(x |xt )− κtj ,τ−1(x |xt )]

Substituting κ̂τ−1(x |xt , j) for κτ−1(x |xt , j) and ψjt (xt ) with ψ̂jt (xt )
then yields:

ûjt (xt ) ≡ ψ̂1t (xt )− ψ̂jt (xt )

+
T−t
∑
τ=1

X

∑
x=1

βτ−t ψ̂1,t+τ(x) [κ̂t1,τ−1(x |xt )− κ̂tj ,τ−1(x |xt )]

The stationary case is similar (and has the matrix representation we
discussed in previous lectures).
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Large Sample or Asymptotic Properties
Asymptotic effi ciency

By the Law of Large Numbers f̂jt (x ′ |x ) converges to fjt (x ′ |x ) and
p̂jt (x) converges to pjt (x), both almost surely.

By the Central Limit Theorem both estimators converge at
√
N and

and have asymptotic normal distributions.

Both f̂jt (x ′ |x ) and p̂jt (x) are ML estimators for fjt (x ′ |x ) and pjt (x)
and obtain the Cramer-Rao lower bound asymptotically.

Since and ujt (x) is exactly identified, it follows by the invariance
principle that ûjt (x) is consistent and asymptotically effi cient for
ujt (xt ), also attaining its Cramer Rao lower bound.

Thus the unrestricted ML and CCP estimators are identical.

Greater effi ciency can only be obtained by making functional form
assumptions about ujt (xt ) and fjt (x ′ |x ).
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Restricting the Parameter Space
Parameterizing the primitives

In practice applications further restrict the parameter space.

For example assume θ ≡
(

θ(1), θ(2)
)
∈ Θ is a closed convex subspace

of Euclidean space, and:

ujt (x) ≡ uj (x , θ(1))
fjt (x |xnt ) ≡ fjt (x |xnt , θ(2))

We now define the model by (T , β, θ, g).
Assume the DGP comes from (T , β, θ0, g) where:

θ0 ≡
(

θ
(1)
0 , θ

(2)
0

)
∈ Θ(interior )

For example many applications assume:

ujt (x) ≡ x ′θ
(1)
j is linear in x and does not depend on t

fjt (x |xnt ) is degenerate, x following a deterministic law of motion that
does not depend on t.
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Quasi Maximum Likelihood (Hotz and Miller,1993)
Overview of the steps

A Quasi Maximum Likelihood (QML) estimator can be obtained by
estimating:

1 θ
(2)
0 with θ

(2)
LIML from the data on fjt

(
x |xt , θ(2)

)
.

2 κτ(x |t, xt , k, θ(2)0 ) with κ̂τ(x |t, xt , k, θ(2)LIML) using fjt
(
x |xt , θ(2)LIML

)
.

3 ψ1t (x) with ψ̂1t (x) by substituting cell estimators p̂jt (x) for pjt (x).

4 vjt
(
x , θ(1), θ(2)0

)
with v̂jt

(
x , θ(1), θ(2)LIML

)
for any given θ(1), given

below.
5 pjt

(
x , θ(1), θ(2)0

)
with p̂jt

(
x , θ(1), θ(2)LIML

)
by substituting

v̂jt
(
x , θ(1), θ(2)LIML

)
for vjt

(
x , θ(1), θ(2)0

)
in ML estimator.
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Quasi Maximum Likelihood Estimation
Elaborating the first three steps in QML estimation

Working through each step:

1. This step is quite common whenever fjt
(
x |xnt , θ(2)

)
must be

estimated:

θ
(2)
LIML ≡ argmax

θ(2)

N

∑
n=1

T

∑
t=1

J

∑
j=1

X

∑
x=1

dnjt1 {xn,t+1 = x} ln
[
fjt (x |xnt , θ(2))

]
2. Here (2) is replaced with:

κ̂τ(xτ+1 |t, xt , j , θ(2)LIML)

≡
{
fjt (xt+1 |xt , θ

(2)
LIML) τ = t

∑Xx=1 f1τ(xτ+1 |x , θ(2)LIML)κ̂τ−1(x |t, xt , j , θ(2)LIML) τ = t + 1, . . .

3. For example if εt is T1EV, then ψ̂1t (x) = 0.57 . . .− ln [p1t (x)].
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Quasi Maximum Likelihood Estimation
Elaborating the last steps in QML estimation

With respect to the last two steps:

4. Appealing to the Representation theorem:

v̂jt
(
x , θ(1), θ(2)LIML

)
= ujt (x , θ

(1)) + ĥjt (x)

where the numeric dynamic correction factor ĥkt (x) is defined:

ĥjt (x) ≡
T

∑
τ=t+1

X

∑
xτ=1

βτ−t ψ̂1τ(xτ)κ̂τ−1(xτ |t, x , j , θ(2)LIML)

5. In T1EV applications:

p̂jt (x , θ
(1), θ

(2)
LIML) =

exp
[
ujt (x , θ

(1)) + ĥjt (x)
]

∑Jk=1 exp
[
ukt (x , θ

(1)) + ĥkt (x)
]
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Minimum Distance Estimators (Altug and Miller,1998)
Minimizing the difference between unrestricted and restricted current payoffs

Another approach is to match up the parametrization of ujt (xt ),
denoted by ujt (xt , θ

(1)), to its representation as closely as possible:
1 Form the vector function where Ψ (p, f ) by stacking:

Ψjt (xt , p, f ) ≡ ψ1t (xt )− ψjt (xt )

+
T−t
∑

τ=1

X

∑
x=1

βτψ1,t+τ(x)
[

κkt ,τ−1(x |xt )
−κjt ,τ−1(x |xt )

]
2 Estimate the reduced form p̂ and f̂ .
3 Minimize the quadratic form to obtain:

θ
(1)
MD = argmin

θ(1)∈Θ(1)

[
u(x , θ(1))−Ψ

(
p̂, f̂
)]′

W̃
[
u(x , θ(1))−Ψ

(
p̂, f̂
)]

where W̃ is a square (J − 1)TX weighting matrix.

Note θ
(1)
MD has a closed form if u(x ; θ(1)0 ) is linear in θ

(1)
0 .
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Simulated Moments Estimators
A simulated moments estimator (Hotz, Miller, Sanders and Smith, 1994)

We could form a Methods of Simulated Moments (MSM) estimator
from:

1 Simulate a lifetime path from xntn onwards for each j , using f̂ and p̂.
2 Obtain estimates of Ê

[
εjt

∣∣∣dojt = 1, xt ] from p̂.

3 Stitch together a simulated lifetime utility outcome from the j th choice

at tn onwards for n, to form v̂jt
(
xntn , θ

(1), f̂ , p̂
)
.

4 Form the J − 1 dimensional vector ln
(
xntn ; θ

(1), f̂ , p̂
)
from:

lnj
(
xntn ; θ

(1), f̂ , p̂
)
≡ v̂jtn

(
xntn , θ

(1), f̂ , p̂
)
− v̂Jtn

(
xntn , θ

(1), f̂ , p̂
)

+ψ̂jt (xntn )− ψ̂Jt (xntn )

5 Given a weighting matrix WS and an instrument vector zn minimize:

N−1
[
∑N
n=1 zn ln

(
xntn ; θ

(1), f̂ , p̂
)]′

WS

[
∑N
n=1 zn ln

(
xntn ; θ

(1), f̂ , p̂
)]
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Simulated Moments Estimators
Notes on this MSM estimator

In the first step, given the state simulate a choice using p̂, and
simulate the next state using f̂ . In this way generate x̂ns and
d̂ns ≡

(
d̂n1s , . . . , d̂nJs

)
for all s ∈ {tn + 1, . . . ,T}.

Generating this path does not exploit knowledge of G , only the CCPs.

In the second step Ê
[
εjt

∣∣∣dojt = 1, xt ] ≡
p−1jt (xt )

∫
εt

J

∏
k=1

I
{

ψ̂jt (xt )− ψ̂kt (xt ) ≤ εjt − εkt

}
εjtg (εt ) dεt

In Step 4 v̂jt
(
xntn , θ

(1), f̂ , p̂
)
is stitched together as:

ujt (xntn , θ
(1))+

T

∑
s=t+1

J

∑
k=1

βt−11
{
d̂nks = 1

}{ uks (x̂ns , θ
(1))

+Ê
[
εjs

∣∣∣x̂ns , d̂njs = 1]
}

The solution has a closed form if ujt (x , θ
(1)) is linear in θ(1).
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Bus Engines (Rust,1987)
A renewal problem

Mr Zurcher maximizes the expected discounted sum of payoffs:

E

{
∞

∑
t=1

βt−1 [dt2(θ1xt + θ2s + εt2) + dt1εt1]

}
where:

dt1 = 1 and xt+1 = 1 if Zurcher replaces the engine
dt2 = 1 and bus mileage advances to xt+1 = xt + 1 if he keeps the
engine
buses are also differentiated by a fixed characteristic s ∈ {0, 1}.
the choice-specific shocks εtj are iid Type 1 extreme value (T1EV).

Define the conditional value function for each choice as:

vj (x , s) =
{

βV (1, s) if j = 1
θ1x + θ2s + βV (x + 1, s) if j = 2

where V (x , s) denotes the social surplus function.
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Bus Engines
The DGP and the CCPs

We suppose the data comprises a cross section of N observations of
buses n ∈ {1, . . . ,N} reporting their:

fixed characteristics sn ,
engine miles xn ,
and maintenance decision (dn1, dn2).

Let p1(x , s) denote the conditional choice probability (CCP) of
replacing the engine given x and s.
Stationarity and T1EV imply that for all t :

p1 (x , s) ≡
∫

εt
do1 (x , s, εt ) g (εt ) dεt

=
∫

εt
1 {εt2 − εt1 ≤ v1(x , s)− v2(x , s)} g (εt |xt ) dεt

= {1+ exp [v2(x , s)− v1(x , s)]}−1

An ML estimator could be formed off this equation following the
steps described above.
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Bus Engines
Exploiting the renewal property

The previous lecture implies that if εjt is T1EV, then for all (x , s, j):

V (x , s) = vj (x , s)− β log [pj (x , s)] + 0.57 . . .

Therefore the conditional value function of not replacing is:

v2(x , s) = θ1x + θ2s + βV (x , s + 1)

= θ1x + θ2s + β {v1 (x + 1, s)− p1(x + 1, s) + 0.57 . . .}

Similarly:

v1(x , s) = βV (1, s) = β {v1(1, s)− ln [p1(1, s)] + 0.57} . . .

Because bus engine miles is the only factor affecting bus value given s:

v1(x + 1, s) = v1(1, s)
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Bus Engines
Using CCPs to represent differences in continuation values

Hence:

v2(x , s)− v1(x , s) = θ1x + θ2s + β ln [p1(1, s)]− β ln [p1(x + 1, s)]

Therefore:

p1(x , s) =
1

1+ exp [v2(x , s)− v1(x , s)]

=
1

1+ exp
{

θ1x + θ2s + β ln
[

p1(1,s)
p1(x+1,s)

]}
Intuitively the CCP for current replacement is the CCP for a static
model with an offset term.

The offset term accounts for differences in continuation values using
future CCPs that characterize optimal future replacements.
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Bus Engines
CCP estimation

Consider the following CCP estimator:
1 Form a first stage estimator for p1(x , s) from the relative frequencies:

p̂1(x , s) ≡
∑Nn=1 dn1I (xn = x) I (sn = s)

∑Nn=1 I (xn = x) I (sn = s)
2 Substitute p̂1(x , s) into the likelihood as incidental parameters to
estimate (θ1, θ2, β) with a logit:

dn1 + dn2 exp(θ1xn + θ2sn + β ln
[

p̂1(1,sn)
p̂1(xn+1,sn)

]
1+ exp(θ1xn + θ2sn + β ln

[
p̂1(1,sn)

p̂1(xn+1,sn)

]
3 Correct the standard errors for (θ1, θ2, β) induced by the first stage
estimates of p1(x , s).

Note that in the second stage ln
[

p̂1(1,sn)
p̂1(xn+1,sn)

]
enters the logit as an

individual specific component of the data, the β coeffi cient entering
in the same way as θ1 and θ2.
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Monte Carlo Study (Arcidiacono and Miller, 2011)
Modifying the bus engine problem

Suppose bus type s ∈ {0, 1 } is equally weighted.
Two state variables affect wear and tear on the engine:

1 total accumulated mileage:

x1,t+1 =
{

∆t if d1t = 1
x1t + ∆t if d2t = 1

2 a permanent route characteristic for the bus, x2, that systematically
affects miles added each period.

More specifically we assume:

∆t ∈ {0, 0.125, . . . , 24.875, 25} is drawn from a discretized truncated
exponential distribution, with:

f (∆t |x2) = exp [−x2(∆t − 25)]− exp [−x2(∆t − 24.875)]

x2 is a multiple 0.01 drawn from a discrete equi-probability distribution
between 0.25 and 1.25.
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Monte Carlo Study
Including the age of the bus in panel estimation

Let θ0t denote other bus maintenance costs tied to its vintage.

This modification renders the optimization problem nonstationary.

The payoff difference from retaining versus replacing the engine is:

ut2(xt1, s)− ut1(xt1, s) ≡ θ0t + θ1min {xt1, 25}+ θ2s

Denoting xt ≡ (x1t , x2) , this implies:

vt2(xt , s)− vt1(xt , s) = θ0t + θ1min {xt1, 25}+ θ2s

+β ∑
∆t∈Λ

{
ln
[

p1t (∆t , s)
p1t (x1t + ∆t , s)

]}
f (∆t |x2)
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Monte Carlo Study
Extract from Table 1 of Arcidiacono and Miller (2011)
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