3 CCP Estimation

Robert A. Miller

Leverhulme Visiting Professor University College London & Richard M. Cyert and Morris DeGroot Professor of Economics and Statistics Carnegie Mellon University

May 2023

Robert A. Miller (CMU UCL & Leverhulme)

National University Singapore

May 2023 1 / 22

Data and outside knowledge

• Recall the social surplus function is:

$$V_t(x_t) \equiv E\left\{\sum_{\tau=t}^T \sum_{j=1}^J \beta^{\tau-t-1} d_{j\tau}^o\left(x_{\tau}, \epsilon_{\tau}\right) \left(u_{j\tau}(x_{\tau}) + \epsilon_{j\tau}\right)\right\}$$

where $d_{j\tau}^{o}(x_{\tau}, \epsilon_{\tau})$ is the optimal choice.

• Suppose the data comes from a panel and assume we know:

- $\textcircled{0} \hspace{0.1 cm} \text{the discount factor } \beta$
- 2 the distribution of disturbances $G_t(\epsilon | x)$
- $u_{1t}(x)$ (or more generally one of the payoffs for each state and time).
- $u_{1t}(x) = 0$ (for notational convenience).

Unrestricted Estimation

The likelihood

- Consider a panel:
 - of independently drawn individuals $n \in \{1, \dots, N\}$
 - each with history $t \in \{1, \dots, T\}$
 - and data on their state variables, x_{nt}
 - and decisions $d_{nt} = (d_{n1t}, \ldots, d_{nJt})$.

• The joint probability distribution of the decisions and outcomes is:

$$\prod_{n=1}^{N} \prod_{t=1}^{T} \left(\sum_{j=1}^{J} \sum_{x'=1}^{X} d_{njt} \mathbf{1} \{ x_{n,t+1} = x' \} p_{jt}(x) f_{jt}(x'|x) \right)$$

Taking logs yields:

$$\sum_{n=1}^{N} \sum_{t=1}^{T} \sum_{j=1}^{J} d_{njt} \left\{ \log \left[p_{jt}(x_{nt}) \right] + \sum_{x=1}^{X} \mathbf{1} \left\{ x_{n,t+1} = x \right\} \log \left[f_{jt}(x|x_{nt}) \right] \right\}$$

Unrestricted Estimation

The reduced form

- Note the choice probabilities are additively separable from the transition probabilities in the formula for the joint distribution of decisions and outcomes.
- Hence the estimation of the joint likelihood splits:
 - One piece deals with the choice probabilities conditional on the state.
 - The other deals with the transition conditional on the choice and state.
- Maximizing each piece separately with respect to $f_j(x'|x)$ and $p_t(x_{nt})$ gives the unrestricted estimators:

$$\widehat{f}_{jt}(x'|x) = \frac{\sum_{n=1}^{N} \mathbf{1}\{x_{nt} = x, d_{njt} = 1, x_{n,t+1} = x'\}}{\sum_{n=1}^{N} \mathbf{1}\{x_{nt} = x, d_{njt} = 1\}}$$

and:

$$\widehat{p}_{jt}(x) = \frac{\sum_{n=1}^{N} \mathbf{1} \{ x_{nt} = x, d_{njt} = 1 \}}{\sum_{n=1}^{N} \mathbf{1} \{ x_{nt} = x \}}$$
(1)

Estimating an intermediate probability distribution

• Let $\kappa_{\tau}(x_{\tau+1}|t, x_t, j)$ denote the probability of reaching $x_{\tau+1}$ at $\tau + 1$ from x_t by following action j at t and then always choosing the first action:

$$\kappa_{\tau}(x_{\tau+1}|t, x_t, j) \equiv \begin{cases} f_{jt}(x_{t+1}|x_t) & \tau = t\\ \sum_{x=1}^{X} f_{1\tau}(x_{\tau+1}|x)\kappa_{\tau-1}(x|t, x_t, j) & \tau = t+1, \dots \end{cases}$$
(2)

• Thus we can recursively estimate $\kappa_{\tau}(x_{\tau+1}|t, x_t, j)$ with:

$$\widehat{\kappa}_{\tau}(x_{\tau+1}|t,x_t,j) \equiv \begin{cases} \widehat{f}_{jt}(x_{t+1}|x_t) & \tau = t\\ \sum_{x=1}^{X} \widehat{f}_{1\tau}(x_{\tau+1}|x) \widehat{\kappa}_{\tau-1}(x|t,x_t,j) & \tau = t+1, \dots \end{cases}$$

• Similarly we estimate $\psi_{jt}(x_t)$ with $\hat{\psi}_{jt}(x_t)$ using the $\hat{p}_{jt}(x)$ estimates of the CCPs.

Unrestricted Estimation

Utility parameter estimates

• From the previous lecture:

$$u_{jt}(x_t) = \psi_{1t}(x_t) - \psi_{jt}(x_t) \\ + \sum_{\tau=1}^{T-t} \sum_{x=1}^{X} \beta^{\tau-t} \psi_{1,t+\tau}(x) \left[\kappa_{t1,\tau-1}(x|x_t) - \kappa_{tj,\tau-1}(x|x_t)\right]$$

• Substituting $\hat{\kappa}_{\tau-1}(x|x_t, j)$ for $\kappa_{\tau-1}(x|x_t, j)$ and $\psi_{jt}(x_t)$ with $\hat{\psi}_{jt}(x_t)$ then yields:

$$\begin{aligned} \widehat{u}_{jt}(x_t) &\equiv \widehat{\psi}_{1t}(x_t) - \widehat{\psi}_{jt}(x_t) \\ &+ \sum_{\tau=1}^{T-t} \sum_{x=1}^{X} \beta^{\tau-t} \widehat{\psi}_{1,t+\tau}(x) \left[\widehat{\kappa}_{t1,\tau-1}(x|x_t) - \widehat{\kappa}_{tj,\tau-1}(x|x_t) \right] \end{aligned}$$

• The stationary case is similar (and has the matrix representation we discussed in previous lectures).

Large Sample or Asymptotic Properties Asymptotic efficiency

- By the Law of Large Numbers $\hat{f}_{jt}(x'|x)$ converges to $f_{jt}(x'|x)$ and $\hat{p}_{jt}(x)$ converges to $p_{jt}(x)$, both almost surely.
- By the Central Limit Theorem both estimators converge at \sqrt{N} and and have asymptotic normal distributions.
- Both $\hat{f}_{jt}(x'|x)$ and $\hat{p}_{jt}(x)$ are ML estimators for $f_{jt}(x'|x)$ and $p_{jt}(x)$ and obtain the Cramer-Rao lower bound asymptotically.
- Since and $u_{jt}(x)$ is exactly identified, it follows by the *invariance* principle that $\hat{u}_{jt}(x)$ is consistent and asymptotically efficient for $u_{jt}(x_t)$, also attaining its Cramer Rao lower bound.
- Thus the unrestricted ML and CCP estimators are identical.
- Greater efficiency can only be obtained by making functional form assumptions about $u_{jt}(x_t)$ and $f_{jt}(x'|x)$.

Restricting the Parameter Space

Parameterizing the primitives

- In practice applications further restrict the parameter space.
- For example assume $\theta \equiv (\theta^{(1)}, \theta^{(2)}) \in \Theta$ is a closed convex subspace of Euclidean space, and:

•
$$u_{jt}(x) \equiv u_j(x, \theta^{(1)})$$

•
$$f_{jt}(x|x_{nt}) \equiv f_{jt}(x|x_{nt}, \theta^{(2)})$$

- We now define the model by (T, β, θ, g) .
- Assume the DGP comes from (T, β, θ_0, g) where:

$$\theta_0 \equiv \left(\theta_0^{(1)}, \theta_0^{(2)}\right) \in \Theta^{(interior)}$$

- For example many applications assume:
 - $u_{jt}(x) \equiv x' \theta_j^{(1)}$ is linear in x and does not depend on t
 - $f_{jt}(x|x_{nt})$ is degenerate, x following a deterministic law of motion that does not depend on t.

• A Quasi Maximum Likelihood (QML) estimator can be obtained by estimating:

Quasi Maximum Likelihood Estimation

Elaborating the first three steps in QML estimation

- Working through each step:
 - 1. This step is quite common whenever $f_{jt}\left(x|x_{nt},\theta^{(2)}\right)$ must be estimated:

$$\theta_{LIML}^{(2)} \equiv \arg\max_{\theta^{(2)}} \sum_{n=1}^{N} \sum_{t=1}^{T} \sum_{j=1}^{J} \sum_{x=1}^{X} d_{njt} \mathbf{1} \{x_{n,t+1} = x\} \ln \left[f_{jt}(x|x_{nt}, \theta^{(2)}) \right]$$

2. Here (2) is replaced with:

$$= \begin{cases} \widehat{\kappa}_{\tau}(x_{\tau+1}|t, x_{t}, j, \theta_{LIML}^{(2)}) \\ f_{jt}(x_{t+1}|x_{t}, \theta_{LIML}^{(2)}) & \tau = t \\ \sum_{x=1}^{X} f_{1\tau}(x_{\tau+1}|x, \theta_{LIML}^{(2)}) \widehat{\kappa}_{\tau-1}(x|t, x_{t}, j, \theta_{LIML}^{(2)}) & \tau = t+1, \dots \end{cases}$$

3. For example if ϵ_t is T1EV, then $\widehat{\psi}_{1t}(x) = 0.57 \dots - \ln [p_{1t}(x)]$.

- With respect to the last two steps:
 - 4. Appealing to the Representation theorem:

$$\widehat{v}_{jt}\left(x,\theta^{(1)},\theta^{(2)}_{LIML}\right) = u_{jt}(x,\theta^{(1)}) + \widehat{h}_{jt}(x)$$

where the numeric dynamic correction factor $\hat{h}_{kt}(x)$ is defined:

$$\widehat{h}_{jt}(x) \equiv \sum_{\tau=t+1}^{T} \sum_{x_{\tau}=1}^{X} \beta^{\tau-t} \widehat{\psi}_{1\tau}(x_{\tau}) \widehat{\kappa}_{\tau-1}(x_{\tau} | t, x, j, \theta_{LIML}^{(2)})$$

5. In T1EV applications:

$$\widehat{p}_{jt}(x,\theta^{(1)},\theta^{(2)}_{LIML}) = \frac{\exp\left[u_{jt}(x,\theta^{(1)}) + \widehat{h}_{jt}(x)\right]}{\sum_{k=1}^{J} \exp\left[u_{kt}(x,\theta^{(1)}) + \widehat{h}_{kt}(x)\right]}$$

Minimum Distance Estimators (Altug and Miller, 1998) Minimizing the difference between unrestricted and restricted current payoffs

• Another approach is to match up the parametrization of $u_{jt}(x_t)$, denoted by $u_{jt}(x_t, \theta^{(1)})$, to its representation as closely as possible:

• Form the vector function where $\Psi(p, f)$ by stacking:

$$\begin{split} \Psi_{jt}\left(x_{t}, p, f\right) &\equiv \psi_{1t}(x_{t}) - \psi_{jt}(x_{t}) \\ &+ \sum_{\tau=1}^{T-t} \sum_{x=1}^{X} \beta^{\tau} \psi_{1,t+\tau}(x) \left[\begin{array}{c} \kappa_{kt,\tau-1}(x|x_{t}) \\ -\kappa_{jt,\tau-1}(x|x_{t}) \end{array} \right] \end{split}$$

estimate the reduced form p̂ and f̂.
Minimize the quadratic form to obtain:

$$\theta_{MD}^{(1)} = \operatorname*{arg\,min}_{\theta^{(1)} \in \Theta^{(1)}} \left[u(x, \theta^{(1)}) - \Psi\left(\widehat{p}, \widehat{f}\right) \right]' \widetilde{W} \left[u(x, \theta^{(1)}) - \Psi\left(\widehat{p}, \widehat{f}\right) \right]$$

where \widetilde{W} is a square (J-1) TX weighting matrix.

• Note $\theta_{MD}^{(1)}$ has a closed form if $u(x; \theta_0^{(1)})$ is linear in $\theta_0^{(1)}$.

Simulated Moments Estimators

A simulated moments estimator (Hotz, Miller, Sanders and Smith, 1994)

- We could form a Methods of Simulated Moments (MSM) estimator from:
 - **()** Simulate a lifetime path from x_{nt_n} onwards for each j, using \hat{f} and \hat{p} .
 - **2** Obtain estimates of $\widehat{E}\left[\epsilon_{jt} \middle| d_{jt}^{o} = 1, x_t\right]$ from \widehat{p} .
 - Stitch together a simulated lifetime utility outcome from the j^{th} choice at t_n onwards for n, to form $\hat{v}_{jt}\left(x_{nt_n}, \theta^{(1)}, \hat{f}, \hat{p}\right)$.
 - Solution Form the J-1 dimensional vector $I_n\left(x_{nt_n}; \theta^{(1)}, \hat{f}, \hat{p}\right)$ from:

$$\begin{aligned} I_{nj}\left(x_{nt_{n}};\theta^{(1)},\widehat{f},\widehat{p}\right) &\equiv \widehat{v}_{jt_{n}}\left(x_{nt_{n}},\theta^{(1)},\widehat{f},\widehat{p}\right) - \widehat{v}_{Jt_{n}}\left(x_{nt_{n}},\theta^{(1)},\widehat{f},\widehat{p}\right) \\ &+ \widehat{\psi}_{jt}(x_{nt_{n}}) - \widehat{\psi}_{Jt}(x_{nt_{n}}) \end{aligned}$$

Given a weighting matrix W_S and an instrument vector z_n minimize:

$$N^{-1}\left[\sum_{n=1}^{N} z_n I_n\left(x_{nt_n}; \theta^{(1)}, \widehat{f}, \widehat{p}\right)\right]' W_{\mathcal{S}}\left[\sum_{n=1}^{N} z_n I_n\left(x_{nt_n}; \theta^{(1)}, \widehat{f}, \widehat{p}\right)\right]$$

Simulated Moments Estimators

Notes on this MSM estimator

- In the first step, given the state simulate a choice using \hat{p} , and simulate the next state using \hat{f} . In this way generate \hat{x}_{ns} and $\hat{d}_{ns} \equiv (\hat{d}_{n1s}, \dots, \hat{d}_{nJs})$ for all $s \in \{t_n + 1, \dots, T\}$.
- Generating this path does not exploit knowledge of G, only the CCPs.
- In the second step $\widehat{E}\left[\epsilon_{jt}\left|d_{jt}^{o}=1,x_{t}
 ight]\equiv$

$$p_{jt}^{-1}(x_t) \int_{\epsilon_t} \prod_{k=1}^J I\left\{\widehat{\psi}_{jt}(x_t) - \widehat{\psi}_{kt}(x_t) \le \epsilon_{jt} - \epsilon_{kt}\right\} \epsilon_{jt} g(\epsilon_t) d\epsilon_t$$

• In Step 4 $\hat{v}_{jt}\left(x_{nt_n}, \theta^{(1)}, \widehat{f}, \widehat{p}\right)$ is stitched together as:

$$u_{jt}(x_{nt_n}, \theta^{(1)}) + \sum_{s=t+1}^{T} \sum_{k=1}^{J} \beta^{t-1} \mathbb{1}\left\{\widehat{d}_{nks} = 1\right\} \left\{ \begin{array}{l} u_{ks}(\widehat{x}_{ns}, \theta^{(1)}) \\ +\widehat{E}\left[\epsilon_{js} \left| \widehat{x}_{ns}, \widehat{d}_{njs} = 1\right] \end{array} \right\}$$

• The solution has a closed form if $u_{jt}(x, \theta^{(1)})$ is linear in $\theta^{(1)}$.

Bus Engines (Rust,1987) A renewal problem

• Mr Zurcher maximizes the expected discounted sum of payoffs:

$$E\left\{\sum_{t=1}^{\infty}\beta^{t-1}\left[d_{t2}(\theta_{1}x_{t}+\theta_{2}s+\epsilon_{t2})+d_{t1}\epsilon_{t1}\right]\right\}$$

where:

- $d_{t1} = 1$ and $x_{t+1} = 1$ if Zurcher replaces the engine
- $d_{t2} = 1$ and bus mileage advances to $x_{t+1} = x_t + 1$ if he keeps the engine
- buses are also differentiated by a fixed characteristic $s \in \{0, 1\}$.
- the choice-specific shocks ϵ_{tj} are *iid* Type 1 extreme value (T1EV).
- Define the conditional value function for each choice as:

$$v_j(x,s) = \begin{cases} \beta V(1,s) & \text{if } j = 1\\ \theta_1 x + \theta_2 s + \beta V(x+1,s) & \text{if } j = 2 \end{cases}$$

where V(x, s) denotes the social surplus function.

Bus Engines The DGP and the CCPs

- We suppose the data comprises a cross section of N observations of buses n ∈ {1,..., N} reporting their:
 - fixed characteristics s_n,
 - engine miles x_n,
 - and maintenance decision (d_{n1}, d_{n2}) .
- Let $p_1(x, s)$ denote the conditional choice probability (CCP) of replacing the engine given x and s.
- Stationarity and T1EV imply that for all t :

$$p_{1}(x,s) \equiv \int_{\epsilon_{t}} d_{1}^{o}(x,s,\epsilon_{t}) g(\epsilon_{t}) d\epsilon_{t}$$

=
$$\int_{\epsilon_{t}} \mathbf{1} \{ \epsilon_{t2} - \epsilon_{t1} \le v_{1}(x,s) - v_{2}(x,s) \} g(\epsilon_{t} | x_{t}) d\epsilon_{t}$$

=
$$\{ \mathbf{1} + \exp [v_{2}(x,s) - v_{1}(x,s)] \}^{-1}$$

• An ML estimator could be formed off this equation following the steps described above.

Robert A. Miller (CMU UCL & Leverhulme)

• The previous lecture implies that if ϵ_{jt} is T1EV, then for all (x, s, j):

$$V(x,s) = v_j(x,s) - eta \log \left[p_j(x,s)
ight] + 0.57 \dots$$

• Therefore the conditional value function of not replacing is:

$$v_2(x, s) = \theta_1 x + \theta_2 s + \beta V(x, s+1) = \theta_1 x + \theta_2 s + \beta \{ v_1 (x+1, s) - p_1 (x+1, s) + 0.57 \dots \}$$

• Similarly:

$$v_1(x,s) = \beta V(1,s) = \beta \{v_1(1,s) - \ln [p_1(1,s)] + 0.57\} \dots$$

• Because bus engine miles is the only factor affecting bus value given s:

$$v_1(x+1,s) = v_1(1,s)$$

Bus Engines Using CCPs to represent differences in continuation values

Hence:

$$v_2(x,s) - v_1(x,s) = heta_1 x + heta_2 s + eta \ln [p_1(1,s)] - eta \ln [p_1(x+1,s)]$$

• Therefore:

$$p_{1}(x,s) = \frac{1}{1 + \exp[v_{2}(x,s) - v_{1}(x,s)]} \\ = \frac{1}{1 + \exp\left\{\theta_{1}x + \theta_{2}s + \beta \ln\left[\frac{p_{1}(1,s)}{p_{1}(x+1,s)}\right]\right\}}$$

- Intuitively the CCP for current replacement is the CCP for a static model with an offset term.
- The offset term accounts for differences in continuation values using future CCPs that characterize optimal future replacements.

Bus Engines CCP estimation

• Consider the following CCP estimator:

() Form a first stage estimator for $p_1(x, s)$ from the relative frequencies:

$$\hat{p}_{1}(x,s) \equiv \frac{\sum_{n=1}^{N} d_{n1} I(x_{n} = x) I(s_{n} = s)}{\sum_{n=1}^{N} I(x_{n} = x) I(s_{n} = s)}$$

Substitute p̂₁(x, s) into the likelihood as incidental parameters to estimate (θ₁, θ₂, β) with a logit:

$$\frac{d_{n1} + d_{n2} \exp(\theta_1 x_n + \theta_2 s_n + \beta \ln\left[\frac{\hat{p}_1(1,s_n)}{\hat{p}_1(x_n+1,s_n)}\right]}{1 + \exp(\theta_1 x_n + \theta_2 s_n + \beta \ln\left[\frac{\hat{p}_1(1,s_n)}{\hat{p}_1(x_n+1,s_n)}\right]}$$

- Orrect the standard errors for (θ₁, θ₂, β) induced by the first stage estimates of p₁(x, s).
- Note that in the second stage $\ln \left[\frac{\hat{p}_1(1,s_n)}{\hat{p}_1(x_n+1,s_n)}\right]$ enters the logit as an individual specific component of the data, the β coefficient entering in the same way as θ_1 and θ_2 .

Robert A. Miller (CMU UCL & Leverhulme)

Monte Carlo Study (Arcidiacono and Miller, 2011) Modifying the bus engine problem

- Suppose bus type $s \in \{0, 1\}$ is equally weighted.
- Two state variables affect wear and tear on the engine:
 - total accumulated mileage:

$$x_{1,t+1} = \begin{cases} \Delta_t \text{ if } d_{1t} = 1\\ x_{1t} + \Delta_t \text{ if } d_{2t} = 1 \end{cases}$$

- a permanent route characteristic for the bus, x₂, that systematically affects miles added each period.
- More specifically we assume:
 - Δ_t ∈ {0, 0.125, ..., 24.875, 25} is drawn from a discretized truncated exponential distribution, with:

$$f(\Delta_t | x_2) = \exp\left[-x_2(\Delta_t - 25)\right] - \exp\left[-x_2(\Delta_t - 24.875)\right]$$

• x₂ is a multiple 0.01 drawn from a discrete equi-probability distribution between 0.25 and 1.25.

- Let θ_{0t} denote other bus maintenance costs tied to its vintage.
- This modification renders the optimization problem nonstationary.
- The payoff difference from retaining versus replacing the engine is:

$$u_{t2}(x_{t1}, s) - u_{t1}(x_{t1}, s) \equiv \theta_{0t} + \theta_1 \min\{x_{t1}, 25\} + \theta_2 s$$

• Denoting $x_t \equiv (x_{1t}, x_2)$, this implies:

$$\begin{aligned} \mathbf{v}_{t2}(\mathbf{x}_t, \mathbf{s}) - \mathbf{v}_{t1}(\mathbf{x}_t, \mathbf{s}) &= \theta_{0t} + \theta_1 \min\left\{\mathbf{x}_{t1}, 25\right\} + \theta_2 \mathbf{s} \\ &+ \beta \sum_{\Delta_t \in \Lambda} \left\{ \ln\left[\frac{\mathbf{p}_{1t}(\Delta_t, \mathbf{s})}{\mathbf{p}_{1t}(\mathbf{x}_{1t} + \Delta_t, \mathbf{s})}\right] \right\} f(\Delta_t | \mathbf{x}_2) \end{aligned}$$

Monte Carlo for Optimal Stopping Problem ⁺				
				Time effects
	DGP	FIML	CCP	CCP
	(1)	(2)	(3)	(4)
θ_0 (Intercept)	2	2.0100	1.9911	
		(0.0405)	(0.0399)	
θ_1 (Mileage)	-0.15	-0.1488	-0.1441	-0.1440
	-0.10	(0.0074)	(0.0098)	(0.0121)
θ_{-} (Type)	1	0.9945	0.9726	0.9683
		(0.0611)	(0.0668)	(0.0636)
β (Discount Factor)	0.9	0.9102	0.9099	0.9172
		(0.0411)	(0.0554)	(0.0639)
Time (Minutes)		130.29	0.078	0.079
		(19.73)	(0.0041)	(0.0047)

⁺ Mean and standard deviations for fifty simulations. For columns (2) and (3), the observed data consist of 1000 buses for 20 periods. For column (4), the intercept (θ_0) is allowed to vary over time and the data consist of 2000 buses for 10 periods.

Robert A. Miller (CMU UCL & Leverhulme)

National University Singapore

・ロン ・四 ・ ・ ヨン ・ ヨン