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Unrestricted Estimation

Data and outside knowledge

@ Recall the social surplus function is:

Vi (x Z Z,BT = ld° (xz, €7) (Ujr(xc) + €jc)

= I‘J 1
where df. (xr, €7) is the optimal choice.

@ Suppose the data comes from a panel and assume we know:

@ the discount factor

@ the distribution of disturbances G; (e |x)

©Q u1t (x) (or more generally one of the payoffs for each state and time).
@ uit (x) = 0 (for notational convenience).
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Unrestricted Estimation

The likelihood

o Consider a panel:

of independently drawn individuals n € {1,..., N}
each with history t € {1,..., T}

and data on their state variables, x,¢

and decisions dnt = (dp1t, .-, dnye)-

@ The joint probability distribution of the decisions and outcomes is:

N T J X
I111 (E Y. doyed {xne1 = X'} pﬁ<x>fﬁ<x/|x>>

Jj=1x'=1

o Taking logs yields:

L}

\|[\1~|

x=1

J
Z e {Iog [Pyt (xnt)] + Z 1 {xn,t11 = x} log [f; (xlxnt)]}
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Unrestricted Estimation

The reduced form

@ Note the choice probabilities are additively separable from the
transition probabilities in the formula for the joint distribution of
decisions and outcomes.

@ Hence the estimation of the joint likelihood splits:

o One piece deals with the choice probabilities conditional on the state.
@ The other deals with the transition conditional on the choice and state.

e Maximizing each piece separately with respect to f;(x’|x) and p;(xn¢)

gives the unrestricted estimators:

. Zrlyzl 1 {Xnt =X, dnjt =1, Xnt+1 = X/}

. x'|x) =
! ( ) EnNzll{Xnt = X, dnjt: 1}
and: N
- ne1 1{xne = x, dpjr =1
e (x) = o= Ll = X, o = 1) &

leyzl 1 {xpe = x}
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Unrestricted Estimation

Estimating an intermediate probability distribution

o Let K (xr41|t, x¢,j) denote the probability of reaching xr11 at T+ 1
from x; by following action j at t and then always choosing the first
action:

fie (xeq1]Xe) T=t
Y, fr(Xep1[X)kr—1 (x|t xe,j) T=1t+1,...

(2)

KT(XT+1|t| Xt,j) = {

@ Thus we can recursively estimate x(x¢y1|t, x¢, j) with:

~ . /f\'t(Xt+1|Xt) T=1t
Ke(xepiltoxe, j) =9 Lx = - .
el X)) { Y A (e )R- (X[t xe, ) T=t41,...
o Similarly we estimate ¢;, (x;) with Z/J\jt(Xt) using the pjr (x) estimates
of the CCPs.
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Unrestricted Estimation

Utility parameter estimates

@ From the previous lecture:

uje(xe) = (Ijlt(xf)_l/)jt(xf)
T—t X

+ Z Z :BT tlpl t+T ) [Ktl,T—l(X‘Xt> - Ktj,r—1<X’Xt)]

=1 x=

o Substituting ®r—1(x|x¢,j) for kr—1(x|x¢,j) and ¢, (x) with ITth(xt)

then yields:
Uje(x) = lT’u(Xt)—’aA”jt(Xt)
T-t X
+ 21 Z B t% T (%) [Ker, -1 (x]xe) — ®gjr—1(x]xe)]

@ The stationary case is similar (and has the matrix representation we
discussed in previous lectures).
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Large Sample or Asymptotic Properties

Asymptotic efficiency

o By the Law of Large Numbers f; (x' |x) converges to f; (x' |x) and
Pjt (x) converges to pj:(x), both almost surely.

@ By the Central Limit Theorem both estimators converge at v/N and
and have asymptotic normal distributions.

e Both 7 (x'|x) and P (x) are ML estimators for f;; (x' |x) and pj:(x)
and obtain the Cramer-Rao lower bound asymptotically.

@ Since and uj(x) is exactly identified, it follows by the invariance
principle that Uy (x) is consistent and asymptotically efficient for
ujt(x¢), also attaining its Cramer Rao lower bound.

@ Thus the unrestricted ML and CCP estimators are identical.

o Greater efficiency can only be obtained by making functional form
assumptions about uj(x¢) and fi (x" |x).
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Restricting the Parameter Space

Parameterizing the primitives

In practice applications further restrict the parameter space.

For example assume 6 = (9(1), 0(2)> € O is a closed convex subspace
of Euclidean space, and:
o ujr(x) = uj(x,0)
° ﬂ't(X|Xnt) = Gt(X|Xnt:9(2))
We now define the model by (T,B.6,g).
Assume the DGP comes from (T, B, 600, g) where:

6y = <9(()1),9(()2)> c @linterior)

For example many applications assume:

o ujt(x) = x’GJ(.l) is linear in x and does not depend on t

o fit(x|xnt) is degenerate, x following a deterministic law of motion that
does not depend on t.
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Quasi Maximum Likelihood (Hotz and Miller,1993)

Overview of the steps

@ A Quasi Maximum Likelihood (QML) estimator can be obtained by
estimating:
o 9(()2) with G(Lzl;\/”_ from the data on f; <x|xt,6(2)>.
Q rr(x|t, xt, k, 9(()2)) with K¢ (x|t, xt, k, 9(L2IB\/IL) using fj (X|Xt,91(_2”)\/IL).
© ¥,(x) with 1, (x) by substituting cell estimators pj; (x) for pj (x).
Q v (X,G(l),982)> with Vj; (x o(1) G(LI;\/IL> for any given o), given
below.
Q pit (X,G(l),G((f)) with pje ( x ( o) 9(L213\/IL) by substituting
Vit (X,G(l),e(j}m) for vj; (X,G( ) 9(2)) in ML estimator.
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Quasi Maximum Likelihood Estimation

Elaborating the first three steps in QML estimation

@ Working through each step:

1. This step is quite common whenever f; (x|x,7t, 9(2)> must be
estimated:

@ N T J X o)
0L = arg ma Z 2 Z Z dnjel {Xn,e11 = x}In [ﬂ't(x|xnf'9 )]
n=1t=1 :]_ x=1

2. Here (2) is replaced with:

. (2
KT(X~L—+1|t,Xt,j,9(LI;VIL)

2
= { Gt(xt+1|xf'9(u;m) o o) T=t
2521 e (xeplx, 9L/ML)/7€T—1(X|tv Xt.J, 9LIML) T=t+1,...

3. For example if €; is T1EV, then l,Ablt (x) =0.57...—In[p1: (x)].
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Quasi Maximum Likelihood Estimation

Elaborating the last steps in QML estimation

@ With respect to the last two steps:
4. Appealing to the Representation theorem:

~ 2 -
Vit (X'G(l)'e(ugm) = uje (x,61) + By (x)
where the numeric dynamic correction factor hy, (x) is defined:

T X
hjt (x) = Z Z ﬁTitEL’lT(XT)?Fl(XT“vX'jvG(LQI%/IL)

T=t+1 x=1

5. In T1EV applications:

exp [ujt(x, 9(1)) —l—/ﬁjt (X)}

Zi:l exp [ukt(x, 6(1)) +/Hkt (X)]

. 2
pje (x, o), 9(L/3\//L) =
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Minimum Distance Estimators (Altug and Miller,1998)

Minimizing the difference between unrestricted and restricted current payoffs

@ Another approach is to match up the parametrization of uj:(x¢),
denoted by wje(x¢, 6(1)), to its representation as closely as possible:
@ Form the vector function where ¥ (p, f) by stacking:

Yje (xe,p. f) = lplt(xf)_lpjt(xt)

T B0 | St ]

=1 x= _Kjt,Tfl(X|Xt

@ Estimate the reduced form p and f.
© Minimize the quadratic form to obtain:

95\;)D = argmin {u(x, 9(1)) -v (’ﬁ ?)}/W [u(x, 9(1)) 4 (ﬁ ?)}

6 ece)

where W is a square (J — 1) TX weighting matrix.
(1))

@ Note 95\},)[) has a closed form if u(x;()O

(1)

is linear in 6
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Simulated Moments Estimators

A simulated moments estimator (Hotz, Miller, Sanders and Smith, 1994)

@ We could form a Methods of Simulated Moments (MSM) estimator
from:

© Simulate a lifetime path from x,s, onwards for each j, using f and p.
@ Obtain estimates of E [eﬁ )dj‘; = 1,xt] from p.
@ Stitch together a simulated lifetime utility outcome from the jt choice

at t, onwards for n, to form Vjt (X,,tn, 9(1),?, ﬁ)

@ Form the J — 1 dimensional vector /, (x,,tn; 9(1),/)‘\, ﬁ) from:

hnj (X,,tn; oM 7, ﬁ) = T, (x,,tn, o) 7, 5) - <x,,tn, o) 7, 5)
"HTth (Xnt,) — @Jt(xntn>

@ Given a weighting matrix Ws and an instrument vector z, minimize:

Nt {Z,I:Izl Znlp (Xnt,,; 9(1),?, /3)}/ Ws [27:1 Znly (Xntn;O(l),?, ﬁ)}
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Simulated Moments Estimators

Notes on this MSM estimator

@ In the first step, given the state simulate a choice using p, and
simulate the next state using f. In this way generate X,s and
dos = <8,,15,...,8,,J5) forallse {t,+1,..., T}

@ Generating this path does not exploit knowledge of G, only the CCPs.

@ In the second step E [eﬁ d =1 xt] =

J
Pt () [ TTH{#:00) = Bialx0) < e — e} e (e0) des
& k=1
® In Step 4 Vj; (xntn, o) 7, ﬁ) is stitched together as:

< o)
S STt LR L AP

s=t+1k

@ The solution has a closed form if uje(x, 6™M) is linear in 1),

Robert A. Miller (CMU UCL & Leverhulme) | National University Singapore May 2023 14 / 22



Bus Engines (Rust,1987)

A renewal problem

@ Mr Zurcher maximizes the expected discounted sum of payoffs:

E { Bt [dra(01x: + 025 +€12) + dtletl]}
=1

where:
e di1 =1 and x¢41 = 1 if Zurcher replaces the engine
e dip =1 and bus mileage advances to x;41 = xt + 1 if he keeps the
engine
e buses are also differentiated by a fixed characteristic s € {0, 1}.

o the choice-specific shocks €;; are iid Type 1 extreme value (T1EV).

@ Define the conditional value function for each choice as:

i (x S)_{ BV(1,s) ifj=1
I\ 2] = 91x—|—925—1—‘BV(x—|—1,S) if j =2

where V/(x, s) denotes the social surplus function.
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Bus Engines

The DGP and the CCPs

@ We suppose the data comprises a cross section of N observations of
buses n € {1,..., N} reporting their:
o fixed characteristics s,
e engine miles xp,
o and maintenance decision (dp1, dp2).
@ Let pi(x,s) denote the conditional choice probability (CCP) of
replacing the engine given x and s.
@ Stationarity and T1EV imply that for all ¢ :

pi(x,s) = / d? (x,s,€.) g (€)) de;

= /Et 1{err — €1 < wvi(x,s) —va(x,s)} g (¢ |x¢) des

= {l+exp[va(x,s)—wvi(x, 5)]}_1

@ An ML estimator could be formed off this equation following the
steps described above.
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Bus Engines

Exploiting the renewal property

@ The previous lecture implies that if €j¢ is TIEV, then for all (x, s, j):
V(x,s) = vj(x,s) — Blog [pj(x,s)] +0.57...
@ Therefore the conditional value function of not replacing is:

w(x,s) = 0ix+6s+pV(x,s+1)
= Oix+0s+B{vi(x+155)—pi(x+1,s)+057...}

@ Similarly:
vi(x,s) =BV(1,s) =B{wvi(l,s) —In[pi(1,s)] +0.57}...
@ Because bus engine miles is the only factor affecting bus value given s:

v(x+1,5) =wv(ls)
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Bus Engines

Using CCPs to represent differences in continuation values

@ Hence:

va(x,s) —vi(x,s) =01x+ 025+ BIn[pi(1,5)] —BIn[pi(x+1,5)]

@ Therefore:

1
1+exp[va(x,s) —vi(x,s)]
1

1+exp{91x+925+5|n [%]}

pi(x,s) =

@ Intuitively the CCP for current replacement is the CCP for a static
model with an offset term.

@ The offset term accounts for differences in continuation values using
future CCPs that characterize optimal future replacements.
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Bus Engines

CCP estimation

@ Consider the following CCP estimator:
@ Form a first stage estimator for p1(x,s) from the relative frequencies:

YN L dail (xo =x)1(sh =)
Z:’Y:l I (xn = x)1(sn =)

@ Substitute p1(x, s) into the likelihood as incidental parameters to
estimate (61,02, B) with a logit:

pi(x.s) =

dn1 + dpo eXp(Gan + 025, + Bln [%}

1+ exp(81xn + 625, + B1n [%]

© Correct the standard errors for (61,62, B) induced by the first stage
estimates of p1(x, s).

@ Note that in the second stage In _Pullisn) | enters the logit as an
p1(xa+1,50)

individual specific component of the data, the B coefficient entering
in the same way as 6; and 6.
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Monte Carlo Study (Arcidiacono and Miller, 2011)

Modifying the bus engine problem

@ Suppose bus type s € {0,1 } is equally weighted.
@ Two state variables affect wear and tear on the engine:
@ total accumulated mileage:

. Ay ifdip =1
XLl = x1t + At it dpy =1

@ a permanent route characteristic for the bus, x», that systematically
affects miles added each period.

@ More specifically we assume:

o A+ € {O, 0.125,..., 24.875,25} is drawn from a discretized truncated
exponential distribution, with:

f(At]x2) = exp [—x2 (At — 25)] — exp [—x2 (A — 24.875)]

e xp is a multiple 0.01 drawn from a discrete equi-probability distribution
between 0.25 and 1.25.
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Monte Carlo Study

Including the age of the bus in panel estimation

Let 6y; denote other bus maintenance costs tied to its vintage.

This modification renders the optimization problem nonstationary.

The payoff difference from retaining versus replacing the engine is:

Ugo (th, S) — U1 (th, S) = 0o + 01 min {th, 25} + 655

Denoting x; = (xi¢, x2) , this implies:

Vi (Xt, S) — Vi1 (Xt, S) = 0Bt + 601 min {th, 25} + 05s
Plt(AtyS)
+p X {in | PBeS) b ra )

JAYASVAN
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Monte Carlo Study

Extract from Table 1 of Arcidiacono and Miller (2011)

Monte Carlo for Optimal Stopping Problem™

Time effects

DGP FIML ccP CCP
(1) (2) (3) (4)
60 (Intercept) > 2.0100 1.9911
(0.0405) (0.0399)
6, (Mileage) 015 -O-1488 -0.1441 -0.1440
(0.0074) (0.0098) (0.0121)
6. (Type) 1 0.9945 0.9726 0.9683
(0.0611) (0.0668) (0.0636)
p (Discount Factor) 0.9 0.9102 0.9099 0.9172
(0.0411) (0.0554) (0.0639)
Time (Minutes) 130.29 0.078 0.079
(19.73) (0.0041) (0.0047)

* Mean and standard deviations for fifty simulations. For columns (2) and (3), the
observed data consist of 1000 buses for 20 periods. For column (4), the intercept (6,)
is allowed to vary over time and the data consist of 2000 buses for 10 periods.
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