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A Class of Dynamic Discrete Choice Markov Models
Continuous versus discrete choices

When should choices be modeled as continuous versus discrete?

1 How comparable are the different choices?

a bigger slice of cake with more icing (continuous)
versus apple or orange (discrete)

2 Are they lumpy or not?

participate or not in the labor force (discrete)
versus how many hours (continuous)

3 What about assumptions on the unobserved variables?

often distributional independence (discrete)
versus conditional mean independence (continuous)

In addition discrete choices might be:

ordered (fuel stops on a road trip)
categorical (choice of vacation destination)
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A Class of Dynamic Discrete Choice Markov Models
Discrete time and finite choice sets

Let t ∈ {1, . . . ,T} denote the time period for some T ≤ ∞.
Each period the individual chooses amongst J actions. Write:

dt ≡ (d1t , . . . , dJt ) and ∑Jj=1 djt = 1 where:

djt =
{
1 if action j is taken at t
0 if not

The random variables influencing this decision include:
xt ∈ {1, . . . ,X} for some finite positive integer X for each t.
εt ≡ (ε1t , . . . , εJt ) where εjt ∈ R for all (j , t).

The data comprise a panel of individuals on (dt , xt ).
Let gt ,x ,ε (xt+1, εt+1 |xt , εt ):

denote mixed density function for (xt+1, εt+1) conditional on (xt , εt )
satisfy the conditional independence assumption:

gt ,j ,x ,ε (xt+1, εt+1 |xt , εt ) = gt+1 (εt+1 |xt+1) fjt (xt+1 |xt )
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A Class of Dynamic Discrete Choice Markov Models
Bounded additively separable preferences

Denoting the discount factor by β ∈ (0, 1), the current payoff from
taking action j at t given (xt , εt ) by:

uj (xt ) + εjt

To ensure a transversality condition is satisfied, assume{∫
max {|ε1t | , . . . , |εJt |} gt (εt |xt ) dεt

}T
t=1 is a bounded sequence.

At the beginning of each period t:

the agent observes the realization (xt , εt )
chooses dt to sequentially maximize:

E
{
∑T

τ=t ∑J
j=1 βτ−1djτ

[
ujτ(xτ) + εjτ

]
|xt , εt

}
(1)

where the expectation is taken over future realized values xt+1, . . . , xT
and εt+1, . . . , εT conditional on (xt , εt ).
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A Class of Dynamic Discrete Choice Markov Models
Optimization

Denote the optimal decision rule at t as dot (xt , εt ), with j
th element

dojt (xt , εt ) and define:

Vt (xt ) ≡ E
{

T

∑
τ=t

J

∑
j=1

βτ−t−1dojτ (xτ, ετ) (ujτ(xτ) + εjτ)

}

The conditional value function, vjt (xt ), is defined as:

vjt (xt ) = ujt (xt ) + β
X

∑
x=1

Vt+1(x)fjt (x |xt )

Integrating dojt (xt , ε) over ε ≡ (ε1, . . . , εJ ):

pjt (xt ) ≡ E
[
dojt (xt , ε) |xt

]
=
∫
dojt (xt , ε) gt (ε |xt ) dε
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Inversion
Differences in conditional valuation functions

The starting point for our analysis is to define differences in the
conditional valuation functions as:

∆vjkt (x) ≡ vjt (x)− vkt (x)

Although there are J (J − 1) differences all but (J − 1) are linear
combinations of the (J − 1) basis functions.
For example setting the basis functions as:

∆vjt (x) ≡ vjt (x)− vJt (x)

then clearly:
∆vjkt (x) = ∆vjt (x)− ∆vkt (x)

Without loss of generality we focus on this particular basis function.
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Inversion
Each CCP is a mapping of differences in the conditional valuation functions

Using the definition of ∆vjt (x):

pjt (x) ≡
∫
dojt (x , ε) gt (ε |x ) dε

=
∫
I {εk ≤ εj + ∆vjt (x)− ∆vkt (x)∀ k 6= j} gt (ε |x ) dε

=

εj+∆vjt (x )−∆v1t (x )∫
−∞

. . .

εj+∆vjt (x )−∆vJ−1,t (x )∫
−∞

εj+∆vjt (x )∫
−∞

gt (ε |x ) dε

Noting gt (ε |x ) ≡ ∂JGt (ε |x )
/

∂ε1, . . . , ∂εJ , integrate over
(ε1, . . . , , εj−1, εj+1 . . . , εJ ).
Denoting Gjt (ε |x ) ≡ ∂Gt (ε |x )

/
∂εj , yields:

pjt (x) =

∞∫
−∞

Gjt

(
εj + ∆vjt (x)− ∆v1t (x), . . .

. . . , εj , . . . , εj + ∆vjt (x)
|x
)
dεj
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Inversion
There are as many CCPs as there are conditional valuation functions

For any vector J − 1 dimensional vector δ ≡ (δ1, . . . , δJ−1) define:

Qjt (δ, x) ≡
∞∫
−∞

Gjt (εj + δj − δ1, . . . , εj , . . . , εj + δj |x ) dεj

We interpret Qjt (δ, x) as the probability taking action j in a static
random utility model (RUM) where the payoffs are δj + εj and the
probability distribution of disturbances is given by Gt (ε |x ).
It follows from the definition of Qjt (δ, x) that:

0 ≤ Qjt (δ, x) ≤ 1 for all (j , t, δ, x) and
J−1
∑
j=1

Qjt (δ, x) ≤ 1

In particular the previous slide implies that for any given (j , t, x):

pjt (x) =

∞∫
−∞

Gjt

(
εj + ∆vjt (x)− ∆v1t (x),
. . . , εj , . . . , εj + ∆vjt (x)

|x
)
dεj ≡ Qjt (∆vt (x), x)
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Inversion
Proposition 1 of Hotz and Miller (1993)

Theorem (Inversion)

For each (t, δ, x) define:

Qt (δ, x) ≡ (Q1t (δ, x) , . . .QJ−1,t (δ, x))
′

Then the vector function Qt (δ, x) is invertible in δ for each (t, x).

Note that pJt (x) = QJt (∆vt , x) is a linear combination of the other
equations in the system because ∑J

k=1 pk = 1.
Let p ≡ (p1, . . . , pJ−1) where 0 ≤ pj ≤ 1 for all j ∈ {1, . . . , J − 1}
and ∑J−1

j=1 pj ≤ 1. Denote the inverse of Qjt (∆vt , x) by Q−1jt (p, x) .
The inversion theorem implies: ∆v1t (x)

...
∆vJ−1,t (x)

 =
 Q−11t [pt (x), x ]

...
Q−1J−1,t [pt (x), x ]


Robert A. Miller (CMU UCL & Leverhulme) (Leverhulme Visiting Professor University College London & Richard M. Cyert and Morris DeGroot Professor of Economics and Statistics Carnegie Mellon University)National University Singapore May 2023 9 / 26



Inversion
Using the inversion theorem

We can use the Inversion Theorem to:
1 provide empirically tractable representations of the conditional value
functions.

2 analyze identification in dynamic discrete choice models.
3 provide convenient parametric forms for the density of εt that
generalize the Type 1 Extreme Value distribution.

4 introduce new methods for incorporating unobserved state variables.
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Corollaries of the Inversion Theorem
Identifying the policy function

From the definition of the optimal decision rule, and then appealing
to the inversion theorem:

dojt (xt , εt ) = ∏J
k=1 1 {εkt − εjt ≤ vjt (x)− vkt (x)}

= ∏J
k=1 1

{
εkt − εjt ≤

vjt (x)− vJt (xt )
− [vkt (x)− vJt (xt )]

}
= ∏J

k=1 1 {εkt − εjt ≤ ∆vjt (x)− ∆vkt (x)}

= ∏J
k=1 1

{
εkt − εjt ≤ Q−1jt [pt (x), x ]−Q−1kt [pt (x), x ]

}
If Gt (ε |x ) is known and the data generating process (DGP) is
(xt , dt ), then pt (x) and hence dot (xt , εt ) are identified.
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Corollaries of the Inversion Theorem
Definition of the conditional value function correction

Define the conditional value function correction as:

ψjt (x) ≡ Vt (x)− vjt (x)

In stationary settings, we drop the t subscript and write:

ψj (x) ≡ V (x)− vj (x)

Suppose that instead of taking the optimal action she committed to
taking action j instead. Then the expected lifetime utility would be:

vjt (xt ) + Et [εjt |xt ]

so committing to j before εt is revealed entails a loss of:

Vt (xt )− vjt (xt )− Et [εjt |xt ] = ψjt (x)− Et [εjt |xt ]

For example if Et [εt |xt ] = 0, the loss simplifies to ψjt (x).
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Corollaries of the Inversion Theorem
Identifying the conditional value function correction

From their respective definitions:

Vt (x)− vit (x)

=
J

∑
j=1

{
pjt (x) [vjt (x)− vit (x)] +

∫
εjtdojt (xt , εt ) gt (εt |x ) dεt

}
But:

vjt (x)− vit (x) = Q−1jt [pt (x), x ]−Q−1it [pt (x), x ]
and ∫

εjtdojt (x , εt ) g (εt |x ) dεt

=
∫ J

∏
k=1

1
{

εkt − εjt
≤ Q−1jt [pt (x), x ]−Q−1kt [pt (x), x ]

}
εjtgt (εt |x ) dεt

Therefore ψit (x) ≡ Vt (x)− vit (x) is identified if Gt (ε |x ) is known
and (xt , dt ) is the DGP.
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Conditional Valuation Function Representation
Telescoping one period forward

From its definition:

vjt (xt ) = ujt (xt ) + β
X

∑
x=1

Vt+1(x)fjt (xt+1|xt )

Substituting for Vt+1(xt+1) using conditional value function
correction we obtain for any k:

vjt (xt ) = ujt (xt ) + β
X

∑
x=1

[
vk ,t+1(x) + ψk ,t+1(x)

]
fjt (x |xt )

We could repeat this procedure ad infinitum, substituting in for
vk ,t+1(x) by using the definition for ψkt (x).
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Conditional Valuation Function Representation
Recursively defining the distribution of future state variables

To formalize this idea, consider a random sequence of weights from t
to T which begins with ωjt (xt , j) = 1.
For periods τ ∈ {t + 1, . . . ,T}, the choice sequence maps xτ and the
initial choice j into

ωτ(xτ, j) ≡ {ω1τ(xτ, j), . . . ,ωJτ(xτ, j)}
where ωkτ(xτ, j) may be negative or exceed one but:

J

∑
k=1

ωkτ(xτ, j) = 1

.
The weight of state xτ+1 conditional on following the choices in the
sequence is recursively defined by κt (xt+1|xt , j) ≡ fjt (xt+1|xt ) and for
τ = t + 1, . . . ,T :

κτ(xτ+1|xt , j) ≡
X

∑
xτ=1

J

∑
k=1

ωkτ (xτ, j) fkτ(xτ+1|xτ)κτ−1(xτ|xt , j)
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Conditional Valuation Function Representation
Theorem 1 of Arcidiacono and Miller (2011)

Theorem (Representation)

For all periods, states and choices (t, xt , j),and any weights ωτ(xτ, j),
vjt (xt ) =

ujt (xt ) +
T

∑
τ=t+1

J

∑
k=1

X

∑
x=1

βτ−t [ukτ(x) + ψk [pτ(x)]]ωkτ(x , j)κτ−1(x |xt , j)

The theorem yields an alternative expression for vjt (xt ) that dispenses
with recursive maximization.

Intuitively, the individuals have already solved their optimization
problem, so their decisions, as reflected in their CCPs, are informative
of their value functions.

Robert A. Miller (CMU UCL & Leverhulme) (Leverhulme Visiting Professor University College London & Richard M. Cyert and Morris DeGroot Professor of Economics and Statistics Carnegie Mellon University)National University Singapore May 2023 16 / 26



Generalized Extreme Values
Definition

Are there tractable distributions Gt (ε |x ) aside from the Type 1
Extreme Value?
Suppose G (ε) factors into two independent distributions, one a
nested logit, and the other any GEV distribution.
Let J denote the set of choices in the nest and denote the other
distribution by G0 (Y1,Y2, . . . ,YK ) let K denote the number of
choices that are outside the nest.
Then:

G (ε) ≡ G0 (ε1, . . . , εK ) exp

[
−
(

∑
j∈J

exp [−εj/σ]

)σ]
The correlation of the errors within the nest is given by σ ∈ [0, 1] and
errors within the nest are uncorrelated with errors outside the nest.
When σ = 1, the errors are uncorrelated within the nest, and when
σ = 0 they are perfectly correlated.
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Generalized Extreme Values
Correction factor for extended nested logit

Lemma
For the nested logit G (εt ) defined above:

ψj (p) = γ− σ ln(pj )− (1− σ) ln

(
∑
k∈J

pk

)

Note that ψj (p) only depends on the conditional choice probabilities
for choices that are in the nest: the expression is the same no matter
how many choices are outside the nest or how those choices are
correlated.

Hence, ψj (p) will only depend on pj ′ if εjt and εj ′t are correlated.
When σ = 1, εjt is independent of all other errors and ψj (p) only
depends on pj .
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Identifying the Primitives
Identifying assumptions and data generating process

The optimization model is fully characterized by the time horizon, the
utility flows, the discount factor, the transition matrix of the observed
state variables, and the distribution of the unobserved variables,
summarized with the notation (T , β, f , g , u) .

The data comprise observations for a real or synthetic panel on the
observed part of the state variable, xt , and decision outcomes, dt .

Following most of the empirical work in this area we consider
identification when (T , β, f , g) are assumed to be known.

Thus the goal is to identify u from (xt , dt ) when (T , β, f , g) is known.

Robert A. Miller (CMU UCL & Leverhulme) (Leverhulme Visiting Professor University College London & Richard M. Cyert and Morris DeGroot Professor of Economics and Statistics Carnegie Mellon University)National University Singapore May 2023 19 / 26



Identifying the Primitives
Identification off long panels (Arcidiacono and Miller,2020)

Theorem (Identification)

For all j , t, and x:

ujt (x) = u1t (x) + ψ1t (x)− ψjt (x) (2)

+
T

∑
τ=t+1

X

∑
xτ=1

βτ−t
{
[u1τ(xτ) + ψ1t (xτ)]×
[κτ−1(xτ|x , 1)− κτ−1(xτ|x , j)]

}

In stationary models, define Ψj ≡
[
ψj (1) . . . ψj (X )

]′
, and for all j :

uj = Ψ1 −Ψj − u1 + β (F1 − Fj ) [I − βF1]
−1 (Ψ1 + u1) (3)

If (T , β, f , g) is known, and if a payoff, say the first, is also known for
every state and time, then u is (exactly) identified.
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American Dream Delayed (Khounzhina and Miller, 2022)
Applying the framework

The average age of a first-time home buyer was about 28 years old in
the 1970s, about 30 in the 1990’s, and is now about 32.5.

This increase coincided with postponing marriage and fertility; the
average age of mother at first birth rose from 22 forty years ago to 24
two decades ago, and is currently about 26.

In contrast female labor-force participation rose from 48 percent in
1975, to 74 percent in 1995 and 76 percent in 2015, hours worked
following a similar pattern.

What role did the following four economic factors play?
1 Real wages to females rose.
2 Females became more educated.
3 The real interest rate declined.
4 Housing prices rose and then fell.
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American Dream Delayed
Notation for the model

Denote by:

bt ∈ {0, 1}, where bt = 1 if a child is born at time t.
ct ∈ R denotes nonhousing consumption, a continuous choice.
lt ∈ {0, 1}, where lt = 1 means female works at time t.
ht ∈ {0, 1}, where ht = 1 means first home is purchased at t.

If ht = 1 then hτ = 0 for τ ∈ {t + 1, . . . ,T}.
Define homeownership by h∗t ≡ ∑t−1

τ=1 hτ. Then there are:

eight (bt , lt , ht ) discrete choices combinations if h∗t = 0.
effectively four (bt , lt ) combinations if h∗t = 1.

We label each possible choice permutation by djt ∈ {0, 1} where:
j ∈ {0, . . . , 7} and if h∗t = 1 then j ∈ {0, . . . , 3}.
∑7j=0 djτ = 1 and ∑3j=0 djτ = 1 if h

∗
t = 1.
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American Dream Delayed
Lifetime household utility

We model household lifetime utility from t onwards as:

−
∞

∑
τ=t

7

∑
j=0

βτ−tdjτ exp(hτuhτ + bτubjτ + lτu
l
τ − ρcτ − εjτ)

where j indexes the discrete choices at τ and:

β denotes the subjective discount factor.
uhτ indexes expected lifetime utility from purchasing first home.
ubτ indexes net expected lifetime utility of raising a child.
ulτ indexes the current utility of current leisure.
ρ is the constant absolute risk aversion parameter.
εjτ is a period τ choice-specific disturbance with iid density g

(
εjτ
)
.
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American Dream Delayed
Cross-section fit (Figure 5 Khorunzhina and Miller 2022)
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American Dream Delayed
Time-series fit (Figure 5 Khorunzhina and Miller 2022)

Robert A. Miller (CMU UCL & Leverhulme) (Leverhulme Visiting Professor University College London & Richard M. Cyert and Morris DeGroot Professor of Economics and Statistics Carnegie Mellon University)National University Singapore May 2023 25 / 26



American Dream Delayed
Counterfactuals (Table 4 Khorunzhina and Miller 2022)
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