
Structural Econometrics Assignment 3 - Auction Estimation
This assignment will guide you through the main estimation steps of the dynamic auction model of "Bidding 
Frictions in Ascending Auctions" to give an idea of the techniques involved in each step. 

To begin, recall that the auction model used has the following features:

• Valuations for each bidder i at auction j are given by  , where y is the auction-

specific component common to all bidders,  is bidder i's private valuation component, and  is the 
auction reserve price.

• Bids can be placed at any moment over a time interval , where  is the end time of the auction.
• Bidding opportunities are random and generated according to the following process: when a bid by 

bidder i is currently winning (in-the-money or INM), no new bidding opportunties for bidder i will arise. 
If bidder i's bid is supplanted by another bid so that it is no longer a provisionally winning bid (out-of-the-
money or OUTM), a random process will determine when the next bidding opportunity is for that bidder. 
Specifically, if bidder i's bid is pushed OUTM at time t, then the next time  for that bidder to bid is a 

random variable that has cdf . Note that this distribution depends on the time pushed OUTM t; this 
means that the frequency of bidding opportunities may change over the auction's duration.

• Bidders always place a bid whenever they have an opportunity to do so, provided that the minimum bid 
required to be INM does not exceed their valuation.

• The lowest provisionally winning bid at any moment in the auction is referred to as the ONM rate.

With these pieces in place, we can describe the estimation of the model in three steps:

1. Estimate the arrival times of new bidding opportunities conditional on being pushed OUTM at time t. 
Because we observe when all bids were placed, this is directly identified from the data and can be done 
with readily available methods.

2. Use the distribution of bids to estimate the (joint) distribution of (pairs of) valuations within an auction.This 
is the "hard part" as it requires construction of a likelihood function over pairs of bids as a function of the 

joint distribution of valuation pairs. This gives the distribution of , or the joint distribution of a pair 
of valuations within an auction

3. Use deconvolution to separate  the distributions of X and Y. This uses known methods but involves some 
messy numerical integration.

1. Estimating the distribution of bidding arrival times

There are two main data files: response_times_data contains a random subset of bid times, and pre_est_data 
has more complete bidding data. For now we can load only the response times:

load response_times_data.mat

Each column corresponds to a single bid, where each row has a value for "response_time", or the time that a 
new bid was placed, and "cross_time", which is the time that the bidder's previous bid was pushed OUTM. 

responses(1:10,:)
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ans = 10×2 table
response_time cross_times

1 1729 1653

2 1086 1062

3 1776 1763

4 1214 1196

5 1418 1394

6 1788 1788

7 1627 1609

8 1762 1751

9 1771 1757

10 590 546

The first entry corresponds to a bidder that submitted a bid at 1729 seconds into the auction (at about minute 
29) after being pushed OUTM at 1653 seconds (27.5 minutes). 

We are primarily interested in the time elapsed between bids, which is "reponse_time" minus "cross_time". If we 
just want the raw, unconditional cdf we can use built-in Matlab commands

ecdf(responses.response_time - responses.cross_times)
xlim([0,400])
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However, we want the distribution of bidding opportunity arrivals conditional on the time that a bidder is pushed 
OUTM. 

Exercise 1: Use the formula in Section 5.1 of the paper to estimate the CDF of bidding arrival times 
when  and when . Graph the CDFs you obtain.

Recall that the formula is 

where  is the time that the previous bid j was pushed OUTM and  is the time of the next bid . While 
there are two summations in the formula, you can use a single sum over all the data points in the "responses" 
table. Use a Gaussian kernel with bandwidth parameter h chosen using Silverman's rule of thumb.

% Exercise 1 code and output here

2. Estimating the distribution of valuations

load pre_est_data.mat

Winning bids

The second data file contains the data relevant to estimating the distribution of valuations . There are two 
arrays that contain bid data: "winning_bid_data" contains bids that won the auction, while "last" is a cell that 
contains information on bids that did not win the auction but were the last bid placed by a bidder in a given 
auction.

All bids have been assigned to a value on a discrete grid that goes from 0 to 1. These gridpoints are contained 
in the file "value_grid". Note: for the purpose of this assignment, the grid is only 10 points.

winning_bid_data(780:785)

ans = 6×1
     4
     4
     6
     3
     3
     4

Each entry in "winning_bid_data" references an index in "value_grid". If we want the bid values, instead of the 
indices, we plug them into the value_grid array:

value_grid(winning_bid_data(780:785))
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ans = 1×6
    0.3333    0.3333    0.5556    0.2222    0.2222    0.3333

Losing bids
The last bid placed by any losing bidder i is contained in "last". Because the last bid is the highest bid placed 
by bidder i, it contains the most information about that bidder's valuation. Each entry in this cell is an array that 
documents each increase to the ONM rate after the last bid of bidder i has been pushed OUTM. We need to 
document each ONM rate increase as there are two things that can occur during each increase and they have 

different implications for bidder i's valuation. Suppose that the ONM rate increase from  at time t to  at time 
. Two things might have happened:   

1. Bidder i received an opportunity to bid in the interval , but bidder i's valuation was below .
2. Bidder i never received an opportunity to bid (and her valuation may or may not have been below ).

Because we have already estimated the probability of receiving a bidding opportunity in Part 1, we can assign 
probabilities to each of these events and construct a likelihood function in terms of only bidder i's valuation.

The cell "last" has 5 columns, but only three are useful for the purposes of this assignment. Ignore columns 1 
and 2 in in estimation.

Column 3: the value grid index corresponding to the time t ONM rate.

Column 4: the value grid index corresponding to the time t-1 ONM rate.

Column 5: the CDF of the arrival rate distribution that gives the probability that a bid will have been received by 
the time of the ONM rate increase, starting from the time the last bid was pushed OUT. That is, this column is 

, where  is the time the bidder's final bid was pushed OUT and t is the time of the ONM rate increase.

Bid locations
Bid locations gives the indices of the sampled bid pairs used in the estimation. Columns 1 and 2 correspond to 
the first bid in the pair. Columns 3 and 4 correspond to the second bid in the pair. If column 1 is greater than 
zero, then that bid was a winning bid and column 1 gives the index of the winning bid in the winning_bid_data 
variable. Otherwise, if column 2 is greater than zero than the bid was not winning and the column gives the 
index of the losing bid data in the last variable.

The same holds for columns 3 and 4: column 3 corresponds to winning bids for the second bid in the pair, and 
column 4 corresponds to losing bids for the second bid in the pair.

Estimation proceeds by splitting the "bid_locations" variable into the cases described in the appendix and 
constructing the likelihood for each case. Note that the variable read into the likelihood function is a 100x1 
vector; to work with the CDF in matrix form within the likelihood you should first reshape this vector into a matrix 
and take its transpose, e.g. "F=reshape(F_v,[10,10])';"

Finally, there are two additional files: starting_guess, which contains an initial point for the optimizer, and 
constraint_conditions. The optimization imposes constraints on the solution, specifically that we need the 
solution to be a valid joint CDF (weakly increasing, values between zero and one, etc.). The constraint 
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conditions file gives the variables needed by the optimizer to impose these conditions in estimation when using 
the "fmincon" function.

IMPORTANT: make sure you have the most recent version of Matlab installed, as the optimizer uses the 
"EnableFeasibilityMode" option which may not be available on previous releases. If you can't use this mode you 
can delete this section of code in the optimizer call below, but be warned that you may converge to an infeasible 
point!

Exercise 2: When sampling pairs of bids from the set of all bids, we categorize each pair into 
the four possible outcomes, explained in appendix C.2: both bids are winning bids, the first wins 
while the second loses, the first loses while the second wins, or both bids lose. The likelihood 
function, "joint_likelihood" contained at the end of this document, separately calculates these four 
components. Complete the likelihood function by filling in the missing entries for the first and third 
components, corresponding to the “win-win” case and the “lose-win” case, respectively. Estimate the 
joint distribution, and visualize the output as a shaded grid using Matlab's built-in "heatmap" command.

% Excercise 2 code and output here
load constraint_conditions.mat % loads the constraints used in the optimization routine
load starting_guess.mat % loads the starting guess used for the optimizer (a randomly sampled independent uniform joint distribution)

N_value=10;
v_grid=value_grid';

likelihood_fun=@(F)joint_likelihood(F,winning_bid_data,last,bid_locations);

options=optimoptions('fmincon','Display','iter','TolCon',1e-6,'TolX',1e-6,'MaxFunEvals',60000,'ConstraintTolerance',1e-6,'EnableFeasibilityMode',true,'SubproblemAlgorithm','cg');
F_v=fmincon(likelihood_fun,F0,constraint_matrix,b,Aeq,beq,lb,[],[],options);

heatmap(reshape(F_v,[10,10]))

3. Deconvolution
The last component of the estimation is using the deconvolution techniques of Kotlarski (1966) and applied 
to economics by Li and Vuong (1998), and Krasnokutskaya (2011). The basic idea of deconvolution is to use 
the joint distribution of pairs of observations to recover the underlying random processes that govern the joint 

distribution. More concretely, suppose we have a two random variables , with

Assume further that , , and Y are mutually independent. Clearly  and  are not independent variables, 

as they are correlated by the realization of Y. Kotlarski (1966) showed that the distributions of , , and Y are 

uniquely determined by the joint distribution of  up to the location of Y (that is, we have to fix the mean 
of Yin estimation). Note: we can also apply these techniques in the exact same way if there is a multiplicative 

structure  by taking logs.

5



Specifically, with the characteristic function of , , we can recover the characteristic 

functions of  and ,  and  as

We can recover the pdf of these random variables from the characteristic functions using the inverse Fourier 
transform:

These techniques are useful for auctions as they allow for the introduction of unobserved auction heterogeneity: 
we typically assume that bidders' valuations are independent within an auction, possibly after controlling 
for a set of observable covariates. However, if there are relevant covariates that are unobserved to the 
econometrician, this assumption will be violated: valuations will not be independent due to the correlation 
induced by this unobserved factor. Deconvolution approaches allow for the econometrician to control for the 
presence of these factors, and was pioneered in this context by Krasnokutskaya (2011).

Deconvolution approaches are also useful in other contexts, especially the measurement error literature. 
Suppose we have two realizations of wages,  and , but both come from data sets of poor quality and there 
are concerns about measurement error in wages influencing regression results. If we fix average wages (that is, 
we set , where  comes from more accurate aggregate statistics), then we can estimate and control 

for the measurement error components  and  using deconvolution. Li and Vuong (1998) first applied these 
techniques in econometrics, and Schennach (2004 Econometrica) provides a more comprehensive treatment.

For our purposes, we are going to use a toy data set to demonstrate how deconvolution works. First we load the 

last data set, which contains realizations from a joint distribution of (continuous) random variables . 

load deconv_data

 come from a distribution generated by  for  mutually independent and 

, with . (Note: the X's are i.i.d and follow the same distribution).

Exercise 3: evaluate the deconvolution method using the code below and graph the results you obtain. 
Next, perform the change of variables to "un-logarithm" the resulting random variables, and plot the 
results as a cdf instead of a pdf.

[y,x,Y_grid,X_grid]=deconvolution(v) % This takes inputs v, an Nx2 vector, and outputs y, which is the pdf of Y, and x, which is the pdf of X.
% Each pdf is evaluated at a set of grid points, defined by Y_grid and
% X_grid.
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Appendix: Functions
Joint likelihood:

function [lik]=joint_likelihood(F_v,winning_bids,last,bid_locations)

% F is read in as a 100x1 vector: reshape to 10x10 matrix
F=reshape(F_v,[10,10])';

% Break into cases

% Win-win
win_win_locs=bid_locations(bid_locations(:,1)>0 & bid_locations(:,3)>0,[1,3]);

% Define L1: the component of the likelihood for pairs of bids that are
% both winning.

% Win-lose

win_lose_locs=bid_locations(bid_locations(:,1)>0 & bid_locations(:,4)>0,[1,4]);
L2=zeros(size(win_lose_locs,1),1);
for j=1:size(win_lose_locs,1)
    L2(j)=sum((F(end,last{win_lose_locs(j,2),1}(:,3))-F(winning_bids(win_lose_locs(j,1)),last{win_lose_locs(j,2),1}(:,3))).*(1-last{win_lose_locs(j,2),1}(:,5))')... 
        +(1-(F(winning_bids(win_lose_locs(j,1)),end)+(F(end,last{win_lose_locs(j,2),1}(1,4))-F(winning_bids(win_lose_locs(j,1)),last{win_lose_locs(j,2),1}(1,4)))))*(1-last{win_lose_locs(j,2),1}(end,5)); % Defines "rectangle" of valuations grid
end

% Lose-win: same as above with roles reversed
lose_win_locs=bid_locations(bid_locations(:,2)>0 & bid_locations(:,3)>0,[2,3]);
lose_win_locs=[lose_win_locs(:,2),lose_win_locs(:,1)];

% Define L3: the component of the likelihood for pairs of bids that have
% one losing bid and one winning bid. Hint: you may find the L2 definition
% helpful

% Lose-Lose
lose_lose_locs=bid_locations(bid_locations(:,2)>0 & bid_locations(:,4)>0,[2,4]);
L4=zeros(size(lose_lose_locs,1),1);
for j=1:size(lose_lose_locs,1)
    temp_F=(F(last{lose_lose_locs(j,1),1}(:,3),last{lose_lose_locs(j,2),1}(:,3))-F(last{lose_lose_locs(j,1),1}(:,4),last{lose_lose_locs(j,2),1}(:,3)))...
        -(F(last{lose_lose_locs(j,1),1}(:,3),last{lose_lose_locs(j,2),1}(:,4))-F(last{lose_lose_locs(j,1),1}(:,4),last{lose_lose_locs(j,2),1}(:,4)));
    
    L4(j)=(1-(F(last{lose_lose_locs(j,1),1}(end,4),end)+(F(end,last{lose_lose_locs(j,2),1}(1,4))-F(last{lose_lose_locs(j,1),1}(end,4),last{lose_lose_locs(j,2),1}(1,4)))))*(1-last{lose_lose_locs(j,2),1}(end,5))*(1-last{lose_lose_locs(j,1),1}(end,5))...
        +(1-last{lose_lose_locs(j,2),1}(end,5))*sum((F(last{lose_lose_locs(j,1)}(:,3),end)-F(last{lose_lose_locs(j,1)}(:,4),end))-(F(last{lose_lose_locs(j,1)}(:,4),last{lose_lose_locs(j,2)}(end,3))-F(last{lose_lose_locs(j,1)}(:,4),last{lose_lose_locs(j,2)}(end,4))).*(1-last{lose_lose_locs(j,1)}(:,5)))...
        +(1-last{lose_lose_locs(j,1),1}(end,5))*sum((F(end,last{lose_lose_locs(j,2)}(:,3))-F(end,last{lose_lose_locs(j,2)}(:,4)))-(F(last{lose_lose_locs(j,1)}(end,3),last{lose_lose_locs(j,2)}(:,4))-F(last{lose_lose_locs(j,1)}(end,4),last{lose_lose_locs(j,2)}(:,4))).*(1-last{lose_lose_locs(j,2)}(:,5))')... 
        +(1-last{lose_lose_locs(j,1),1}(:,5))'*temp_F*(1-last{lose_lose_locs(j,2),1}(:,5));
end
L4(L4<=0)=[];
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lik=(-1)*(sum(log(L1))+sum(log(L2))+sum(log(L3))+sum(log(L4)));
end

Deconvolution:

function [y,z,Y_grid,Z_grid]=deconvolution(Z)

Y_grid=linspace(-4,0,20);
Z_grid=linspace(-1.5,2.5,20);
Y_pdf=zeros(size(Y_grid,2),1);
Z_pdf=zeros(size(Z_grid,2),1);

T=3;
T2=10;

fun1=@(U) arrayfun(@(u) exp(integral(@(t1) psi1_psi(t1,Z),0,u)),U);

fun2=@(U) arrayfun(@(u) characteristic_function(u,0,Z)./(exp(integral(@(t1) psi1_psi(t1,Z),0,u))),U);
% Dampening factor:(1-(abs(t)/T2)).*
for j=1:size(Y_grid,2)
    Y_pdf(j)=(1/(2*pi))*integral(@(t) (1-(abs(t)/T)).*exp(-1i.*t.*Y_grid(j)).*fun1(t),-T,T);
    Z_pdf(j)=(1/(2*pi))*integral(@(t) (1-(abs(t)/T2)).*exp(-1i.*t.*Z_grid(j)).*fun2(t),-T2,T2);
end
Y_pdf=real(Y_pdf);
Y_mean=trapz(Y_grid,Y_grid'.*Y_pdf);

y=Y_pdf;
z=real(Z_pdf);

end

function char=characteristic_function(t1,t2,Z)
char=mean(exp(1i.*t1.*Z(:,1) + 1i.*t2.*Z(:,2)));
end

function ratio=psi1_psi(t1,Z)
ratio=((characteristic_function(1e-2,t1,Z)-characteristic_function(-1e-2,t1,Z))./2e-2)./characteristic_function(0,t1,Z);
end
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