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Assignment 1

Assumptions and model

Derivation of v0(xit )− v1(xit ) = σ log
p0(xit )
p1(xit )

.

Understanding the ‘estimating equation’:

σ log
p0(xit )
p1(xit )

= βEx

[
−σ log p

(1)
1 (x0it )− c(1) (x0it )

]
+ c (xit )

Understanding the assumptions for identification of monetary costs and
non-monetary costs of closing a bank by FDIC.
Understanding how the authors are estimating transitions in the paper (and
why).

Alternative Conditional Choice Probabilities

Including a time trend.
Omitting the effect of the House of Representatives (denoted as House in the
paper) and/or Senate.
Adding squared terms on time, House and/or Senate.
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What I will cover today . . .

Hotz and Miller’s inversion theorem and the implicit function theorem

A review of dynamic discrete choice model and conditional choice probability
estimation

Arcidiacono and Ellickson, ”Practical methods for estimation of dynamic
discrete choice models.” (2011) is a good reference.

A quick walk-through for Kang et al. (2015).

Installing COMPECON Matlab toolbox

My Replication vs KLW with time trend

Some tips for assignment
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Hotz and Miller (1993): Inversion Theorem

Wikipedia’s page on implicit function theorem illustrates the idea of the
Inversion Theorem in Hotz and Miller (1993).

Suppose we have an m-dimensional space, parametrized by a set of
coordinates (x1, . . . , xm).

We can introduce a new coordinate system (x ′1, . . . , x ′m) by supplying m
functions h1 . . . hm each being continuously differentiable:

x ′1
x ′2
...

x ′m−1
x ′m

 =


h1(x1, . . . , xm)
h2(x1, . . . , xm)

...
hm−1(x1, . . . , xm)
hm(x1, . . . , xm)


The set of functions h1, . . . , hm allow us to find the new coordinates
(x ′1, . . . , x ′m), given the point’s old coordinates (x1, . . . , xm).

We want to verify if the opposite is possible: given coordinates (x ′1, . . . , x ′m),
can we ‘go back’ and compute the original coordinates (x1, . . . , xm)?
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Hotz and Miller (1993): Inverstion Theorem

The implicit function theorem provides an answer to this question.

The new and old coordinates (x ′1, . . . , x ′m, x1, . . . , xm) are related by f = 0:

f
(
x ′1, . . . , x ′m, x1, . . . , xm

)
=
(
h1 (x1, . . . , xm)− x ′1, . . . , hm (x1, . . . , xm)− x ′m

)
Now the Jacobian matrix of f at a certain point (a, b) where
a = (x ′1, . . . , x ′m), b = (x1, . . . , xm) is given by

(Df )(a, b) =


−1 · · · 0 ∂h1

∂x1
(b) · · · ∂h1

∂xm
(b)

...
. . .

...
...

. . .
...

0 · · · −1 ∂hm
∂x1

(b) · · · ∂hm
∂xm

(b)

 = [−Im | J ]

where Im is the m×m identity matrix and J is the m×m matrix of partial
derivatives evaluated at (a, b) (we don’t see a in the Jacobian in this
particular application of the implicit function theorem).

The implicit function theorem states that we can locally express (x1, . . . , xm)
as a function of (x ′1, . . . , x ′m) if J is invertible, |J | 6= 0.
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Hotz and Miller (1993): Inversion Theorem

Hotz and Miller (1993) applies this idea to the relationship between the CCPs
and the conditional value functions for each x and t.

They consider a (J − 1)-dimensional vector of CCPs,p := (p1, p2, . . . , pJ−1).
This is because there is linear dependence in the vector of all CCPs:

∑J
j=1 pj = 1.

The corresponding vector of differences of conditional value functions is
∆v := (∆v1, . . . , ∆vJ−1) where ∆vj = vj − vJ (J is the normalizing choice
here).

Us econometricians observe the (J − 1)-dimensional CCPs as a coordinate in
a (J − 1)-simplex for each x and t from the data. We also know that the
following relation holds for j = 1, . . . , J − 1:

pjt(x) =
∫ ∞

−∞
Gjt

(
εj + ∆vjt(x)− ∆v1t(x), . . . , εj , . . . , εj + ∆vjt(x)

∣∣∣x) dεj

where G is the cdf of (ε1, . . . , εJ ) and Gj is its partial derivative with respect
to the j-th argument.
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Hotz and Miller (1993): Inversion Theorem

Hotz and Miller were wondering, given the CCPs p ∈ ∆J−1, can we ‘go back’
and find the original coordinates ∆v = (∆v1, ∆v2, . . . , ∆vJ−1) ∈ RJ−1?

Appealing to the implicit function theorem, we compute:

(Df )(∆v , p) =


−1 · · · 0 ∂Q1

∂v1
(p) · · · ∂Q1

∂vJ−1
(p)

...
. . .

...
...

. . .
...

0 · · · −1 ∂QJ−1
∂v1

(p) · · · ∂Qm
∂vJ−1

(p)

 = [−IJ−1 | J ]

If the determinant of the right half of the Jacobian, J , is invertible, yes, we
can invert (p1, p2, . . . , pJ−1) to (v1 − vJ , v2 − vJ , . . . , vJ−1 − vJ ).

By the virtue of G being continuously differentiable (or, “well-defined”, they
say), Hotz and Miller prove that J , is invertible.

...and this is how they found the inversion theorem!
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CCPs and CVFs when ε follows i.i.d T1EV

In many cases, you will see ε follows i.i.d. T1EV so let’s see some expressions
in a binary case. Let’s say we observe p1 and ∆v = ∆v1 = v1 − v2.

p1(x) = Q1(∆v1(x), x) =
∫ ∞

−∞

∫ ∆v1(x)+ε1

−∞
g(ε1, ε2|x)dε2dε1

=
exp(∆v1(x))

1 + exp(∆v1(x))

log p1(x) = ∆v1(x)− log(1 + exp(∆v1(x))

The ex-ante value function is V (x) = log
(
∑j=1,2 exp(v1(x))

)
+ γ.1 Using

this, let’s compute the correction term, ψ1(x) := V (x)− v1(x):

ψ1(x) = log

(
∑

j=1,2

exp(v1(x))

)
+ γ− v1(x)

= γ− log

(
exp(v1(x))

∑j=1,2 exp(v1(x))

)
= γ− log p1(x).

1If you are interested in derivation, see here. γ ≈ 0.577215 is the Euler-Macheroni constant.
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Static Discrete Choice and CCP

Let’s consider a static model of a utility maximizing agent:

Choice: j ∈ J := {1, . . . , J} and state x ∈ X := {1, . . . ,X}.
u(x , j) is the utility the agent enjoys given choice j and state x .
ε := (ε1, . . . , εJ ) is the vector of idiosyncratic shocks.
do(x , ε) := (do

1 (x , ε), . . . , do
J (x , ε)) is the vector of indicator functions that

characterize the decision rule.

The agent solves: max
j∈J

u(x , j) + εj .

The decision rule is obvious:

do
j (x , ε) = 1[u(x , j) + εj ≥ u(x , k) + εk ∀k ∈ J ].
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Static Discrete Choice and CCP

We only observe {(dn, xn)}Nn=1 where dn := (d1n, . . . , dJn) and
djn := 1(agent n chose j).

We are interested in how much can we say about u(x , j) from the
‘conditional choice probabilities (CCP)’ we compute from the data:

p(dj = 1|x) = Eε (1[u(x , j) + εj ≥ u(x , k) + εk ∀k ∈ J ])

= Eε (1[u(x , j)− u(x , k) ≥ εk − εj ∀k ∈ J ])

Assuming that we know the distribution of ε ∼ G , we can compute the RHS.
Let’s assume ε ∼i.i.d T1EV. Then,

p(dj = 1|x) = exp(u(x , j)− u(x , k))

∑l∈J exp(u(x , l)− u(x , k))

Adding or multiplying all utilities by a constant does not change the CCPs.
Thus, we say that the utilities are identified up to normalization.
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Static Discrete Choice and CCP

So, how do we estimate u(x , j)− u(x , k) ∀j ∈ J for each x ∈ X ?

We first choose which choice-specific utility to normalize for each x ∈ X . For
convenience, a lot of applications normalize choice j = 1 for all x ∈ X by
setting u(x , 1) = 0 for all x ∈ X .2

We have (J − 1)× X (linearly independent) equations and (J − 1)× X
“parameters” to estimate (is it under/exactly/over-identified?):

The equations are p(dj = 1|x)− exp(u(x ,j)−u(x ,1))
1+∑k 6=1 exp(u(x ,k)−u(x ,1)))

= 0 for

j ∈ {2, . . . , J} for each x .
The parameters are u(x , j) for j = {2, . . . , J} for each x .

By differencing the log of CCPs, we can instead use the equation below and
avoid computing the denominator:

log
p(dj = 1|x)
p(d1 = 1|x) = u(x , j)− u(x , 1)

2Arcidiacono and Miller (2019) shows why normalizing like this without ‘actually knowing’
u(x , j) for one of the choices for each x ∈ X is misleading.
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Static Discrete Choice and CCP

Let’s follow ‘plug-in GMM’ approach:

Estimate the CCPs p(dj = 1|x) from the data: p̂(dj = 1|x).
Plug the estimates of the CCPs in the set of equations above.
Construct a criterion function with the equations above and minimize the
criterion function using the parameters u(x , j).

In other words, we are using u(x , j)’s to match the set of equations whose
element looks like below:

log
p̂(dj = 1|x)
p̂(d1 = 1|x) = u(x , j)− u(x , 1) = u(x , j)− 0 = u(x , j)

If u(x , j) is allowed to be as flexible as possible, then the estimate is

straightforward: log
p̂(dj=1|x)
p̂(d1=1|x) . If u(x , j) is parameterized, then it resembles

over-identified GMM (more equations than the number of parameters).
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Dynamic Discrete Choice and CCP

Most of the things we just saw in the static case are applicable in a dynamic
framework with just a few more factors: transition probabilities fjt(xt+1|xt),
a discount factor β ∈ [0, 1], and time horizon T ≤ ∞.

The agent now solves: max
d∗t

Ed∗t

[
∑T

τ=t βτ−t(u(xτ, jτ) + εj,τ)|xt , εt
]

d∗t is a set of decision rules do
t (xτ, ετ) for the state at t, (xt , εt ), and for all

possible realizations of (xτ, ετ)Tτ=t+1.
The expectation is taken over all possible realization of (xτ, ετ) induced by the
decision rule d∗t .
In other words, the agent decides what to do today by reflecting all optimal
choices the agent will choose in the future given β,G , fjτ(xτ+1|xτ),T .
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Dynamic Discrete Choice and CCP

We saw in the lecture that:

Vt(xt , εt) = max
d∗t

u(xt , jt) + εjt + Ed∗t

[
T

∑
τ=t+1

βτ−t(u(xτ, jτ) + εjτ)|xt , εt

]
= max

j
u(xt , j) + εjt + β

∫
ε

∑
xt+1

Vt+1(xt+1, ε)fjt(xt+1|xt)gt+1(ε|xt+1)dε

= max
j

u(xt , j) + εjt + β ∑
xt+1

V̄t+1(xt+1)fjt(xt+1|xt).

Let’s make this look similar to the static case! We already have εjt . How can
we make the rest look similar to u(x , j)? This is where conditional value
function comes in.

Recall that vjt(xt) is the life-time utility that you commit to choose j at t
and choose optimally from t + 1 and onward:

vjt(xt) := u(xt , jt) + β ∑
xt+1

V̄t+1(xt+1)fjt(xt+1|xt)
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Dynamic Discrete Choice and CCP

The optimization problem at t now looks like: max
j

vjt(xt) + εjt

The decision rule now looks also similar:

do
jt(xt , εt) = 1[vjt(xt) + εj ≥ vkt(xt) + εk ∀k ∈ J ].

Assuming εt is i.i.d. T1EV for every t, we have:

p(djt = 1|xt) =
exp(vjt(xt))

∑k∈J exp(vkt(x))
=

exp(vjt(xt)− vkt(xt))

∑l∈J exp(vlt(xt)− vkt(xt))
(1)

for some choice k ∈ J for each xt .

There is one more complication, though; there’s recursive component:

vjt(xt)− vkt(xt)

= u(xt , j)− u(xt , k) + β

(
∑
xt+1

V̄t+1(xt+1)
[
fjt(xt+1|xt)− fkt(xt+1|xt)

])

and V̄τ(xτ) = γ + log(∑j∈J exp(vjτ(xτ))).
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Dynamic Discrete Choice and CCP

How can we use equation (1) and bypass computing V̄t+1(xt+1)?

This is where the inversion theorem from Hotz and Miller (1993) and finite
dependence from Arcidiacono and Miller (2011, 2020) come in.

The inversion theorem implies that there exists a function ψ : X → RJ such
that ψj (p(x)) = V̄ (x)− vj (x) where p(x) is the vector of CCPs. If
ε ∼T1EV, then ψj (x) = γ− log(pj (x)).

Let’s cover a DDC model with a terminal choice:

j ∈ J is a terminal choice if i) the agent moves to the ‘absorbing state’
deterministically next period, or ii) the agent chooses it once, she must choose
it for the rest of her life (Hotz and Miller, 1993).
If choice 1 is the terminal choice with property (i), then

V̄t+1(xt+1) = ψ1(pt+1(xt+1)) + v1,t+1(xt+1)

= ψ1(pt+1(xt+1)) + u1,t+1(xt+1) + β ∑
xt+2

V̄t+2(xt+2)f1,t+1(xt+2|xt+1)

= ψ1(pt+1(xt+1)) + u1,t+1(xt+1) + βV̄t+2(a), a is the absorbing state.

(2)
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Dynamic Discrete Choice and CCP

Remember that we started with some vjt(xt) and vkt(xt) at t. We want to
avoid computing ex-ante value function V̄ (x), which again contains vjτ(xτ)’s.

We see that regardless of what choice the agent made at t, she reaches at
state a deterministically at t + 2 if she chooses the terminal choice at t + 1.

f1,t+1(xt+2|xt+1)fjt (xt+1|xt ) = f1,t+1(xt+2|xt+1)fkt (xt+1|xt ), ∀xt+2 ∈ X
f1,t+1(a|xt+1)fjt (xt+1|xt ) = f1,t+1(a|xt+1)fkt (xt+1|xt ) = 1

Using this feature, we can cancel the expectation of the ex-ante value
function at t + 1.

vjt (xt ) = ujt (xt ) + β ∑
xt+1

[
ψ1(pt+1(xt+1)) + u1,t+1(xt+1)+

β ∑xt+2
V̄t+2(xt+2|xt+1)f1,t+1(xt+2|xt+1)

]
fjt (xt+1|xt )

vkt (xt ) = ukt (xt ) + β ∑
xt+1

[
ψ1(pt+1(xt+1)) + u1,t+1(xt+1)+

β ∑xt+2
V̄t+2(xt+2|xt+1)f1,t+1(xt+2|xt+1)

]
fkt (xt+1|xt )

vjt (xt )− vkt (xt ) = ujt (xt )− ukt (xt ) + β ∑
xt+1

[
ψ1(pt+1(xt+1))
+u1,t+1(xt+1)

]
[fjt (xt+1|xt )− fkt (xt+1|xt )]
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Dynamic Discrete Choice and CCP

Taking logs in equation (1) and using appropriate differencing, we get:

log
pt(dj = 1|xt)
pt(dk = 1|xt)

= vjt(xt)− vkt(xt)

= ujt(xt)− ukt(xt) + β

(
∑
xt+1

(
[ψ1(pt+1(xt+1)) + u1,t+1(xt+1)]
×[fjt(xt+1|xt)− fkt(xt+1|xt)]

))

So, the identifying equation has just (a little) more complicated form on the
RHS in the dynamic case with future utilities, transitions, discount factor,
and the correction term (ψ, which is again just a specific function of CCPs)

Finite dependence (Arcidiacono and Miller, 2011, 2020) generalizes this
concept when we do not necessarily have such special choices in a discrete
space.
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Dynamic Discrete Choice and CCP

Convince yourself that we have the same number of equations as the number
of parameters in a dynamic case, too. However, as we start parameterizing
the utilities, then we have overidentification.

Estimation is a plug-in GMM (again):

Estimate the CCPs and transition matrices from the data.
Stack all the identifying equations you need to identify the parameters.
Plug the estimates of the CCPs and transition probabilities in the identifying
equations.
Construct a criterion function.
Minimize the criterion function with the parameters (i.e., the components that
determine ujt (xt )).
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Kang, Lowery, Wardlaw (2015)

This paper estimates the FDIC’s decision to close a bank using a dynamic
discrete choice model.

‘Closing a bank’ is the terminal choice.

Once a bank is closed, it moves to a set of absorbing states (“∆”).

The FDIC gets zero utility once the bank is in an absorbing state (u(x) = 0;
however, it still gets idiosyncratic shocks, ε1, from the closed bank
throughout the FDIC’s life).
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KLW Estimation Procedure

The cost function is a sum of monetary costs and non-monetary costs:

c(xit) = MC (xit |θmc ) + x̃ ′itθnmc (3)

MC (xit |θmc ) is estimated separately with Tobit regression.

CCPs are estimated using a flexible logit. Each bank-specific variable has 3
lags, each approximated using a cubic spline method.

p1(xit) = Λ({B(bis)}s=t,...,t−3, {mis}s=t,...,t−3) (4)

After estimating the CCPs and relevant parameters for the monetary cost
function, KLW estimate non-monetary costs using the following equation:

σ log
p0(xit)

p1(xit)
= βEx [−σ log p

(1)
1 (x0it)− c (1)(x0it)] + c(xit) (5)

The moment condition that yields the main estimating equation is the
orthogonality between the subset of bank-specific variables z̃it and
v(zit , π̂, θnmc , θ̂mc ), which is (RHS-LHS) of equation (5).

E[z̃itv(zit , π̂, θnmc , θ̂mc )] = 0 (6)
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KLW Estimation Procedure

1 Estimate θmc from the actual monetary payouts by the FDIC using a Tobit model.

2 Estimate the transition process for each variable xit . Table 4 shows the estimation
result.

3 Estimate the probability of closure with a flexible logit as a function of all xit and
determinants of the transition process.

4 Run simulation to:

draw projected period-ahead state variables using the estimates from step 2
(”transitions”)
generate the corresponding period-ahead monetary costs from step 1
generate the corresponding CCPs from a flexible logit function from step 3

Repeat 5000 times per observation, that is, per bank-quarter. Then, calculate the
average across the 5,000 simulations as a sample analogue to the expectation of the
CCPs. Similarly, calculate the expectation of the period-ahead state variables as
well.

5 Using the expected period-ahead CCPs and state variables, estimate θnmc from
estimating equation (5) using continuously updated GMM.
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Installing COMPECON Matlab toolbox

https://pfackler.wordpress.ncsu.edu/compecon-download/

Download, unzip, and put it in a folder you put your toolboxes

I use C:\Program Files\MATLAB\R2021b
Add COMPECON folder in path in Home → Set Path → Add Folder (or
Add with Subfolders)
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Code: Overview

The baseline estimation is done with logit KLW.do, ccpnext param KLW.m,
param data prep KWL.m, and Avar param obj KLW.m.

There are eight files to run, as instructed in estimation procedure.txt

logit KLW.do

ccpnext param KLW.m % Takes about 7 minutes
param data prep KLW.m

GMM1st KLW.m

afterGMM1st KLW.m

findmin cont KLW.m

theta save KLW.m % Takes a long time
Avar param obj KLW.m

Once this is done (∼ 15 minutes), run either:

load(’output files\theta KLW.mat’,’theta KLW’) % shows the estimates
(sign is reversed)
load(’output files\T KLW.mat’,’T adjust A’) % shows the estimates
(sign is reversed) and the standard errors
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Code: Including time trend

1 In logit KLW.do, extend logit regression to include v79, a simple index for
each year-quarter. Then, estimate the conditional choice probability with
flexible logit.

2 In ccpnext param KLW.m, include time trend. The modifications only load
the coefficients from the logit regression with time trend and utilize them in
simulating one period-ahead CCPs from simulated period-ahead bank
characteristics.

3 In param data prep KWL.m, include time trend in the code similar to the
second file.

4 In Avar param obj KLW.m, change the dimension of the Variance-covariance
matrix to include time trend and added time trend variable in Xlogit next

in second to the last column.

5 In all m-files in function files folder, all codes refer to expected CCP, the
expected CCP in the next period, and the log of expected CCP in the next
period. They are estimated with flexible logit without time trend. These need
to be adjusted to include time trend. The replication code has where you
should change.
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Replication vs KLW with time trend

Time trend KLW Change

β 0.95*** 0.96*** 1%
(0.01) (0.01) 0%

σ 713 646 -9%
(492) (430) -13%

Intercept 388885*** 507025*** 30%
(82830) (83595) 1%

log(Assets) -80842*** -93753 16%
(12324) (15998) 30%

log(Assets2) 3729*** 4334*** 16%
(565) (782) 38%

NP Loans/Assets 52769 56343 7%
(34654) (37543) 8%

Net Income/Assets 48488** 48087** -1%
(22998) (22202) -3%

RE Owned/Assets 175473** 188034** 7%
(82638) (94043) 14%

House 795 849** 7%
(402) (458) 14%

Senate -166 -207 25%
(131) (156) 19%
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Some tips in changing the code

In this assignment, you will be changing the state space in estimating the
conditional choice probabilities. You also may want to change the transition,
utilities, or orthogonality conditions in the criterion function in Matlab
accordingly.

When changing the logit regression for the CCPs, think carefully how that
affects the utilities (in this paper, the cost function) and transitions. Justify
your changes to the utilities and transitions, if any.

If you can, parallelize simulation using parfor from Matlab’s Parallel
Computing Toolbox as simulations take a lot of time.

Takeaway: Ideally, you want to estimate the CCPs nonparametrically to most
flexibly capture the CCPs. If you have reasons to think that is impossible, you
can instead put some parametric assumptions and proceed, like this paper.
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