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We provide empirical restrictions of a model of optimal order submissions in a limit order market.
A trader’s optimal order submission depends on the trader’s valuation for the asset and the trade-offs
between order prices, execution probabilities and picking off risks. The optimal order submission strategy
is a monotone function of a trader’s valuation for the asset. We test the monotonicity restriction in a sample
of order submissions and their realized outcomes from the Stockholm Stock Exchange. We do not reject
the monotonicity restriction for buy orders or sell orders considered separately, but reject the monotonicity
restriction for buy and sell orders considered jointly.

1. INTRODUCTION

Many financial assets trade in limit order markets. In a limit order market, traders can submit
market orders and limit orders. A market order fills immediately at the most attractive price
posted by previously submitted limit orders in the limit order book. A limit order specifies a
particular price, but does not guarantee that the order will be filled. Unfilled limit orders enter
the limit order book, where they are stored until they are cancelled or filled by market orders.

A limit order offers the trader a better price than a market order, but there are costs to
submitting a limit order. The limit order may fail to fill; we call the probability that the limit
order fills the execution probability. The limit order may take time to fill. If the trader does not
continuously monitor the limit order, then the limit order may fill when there is a change in
the asset value; we call the expected loss from such fills the picking off risk. Many theoretical
models of optimal order submissions are based on the trade-offs between order prices, execution
probabilities and picking off risks. For example, inCohen, Maier, Schwartz and Whitcomb
(1981), Harris (1998), Parlour(1998) andFoucault(1999), market and limit order submitters
consider the trade-offs. InGlosten(1994), Seppi(1997) andBiais, Martimort and Rochet(2000)
limit order submitters consider the trade-offs.

Empirically, traders change their order submissions as market conditions change. Traders
typically observe information on the number of unfilled limit orders in the book; as well as the
bid–ask spread, equal to the difference between the prices of the lowest priced sell limit order
and highest priced buy limit order in the book.Biais, Hillion and Spatt(1995) find that traders
in the Paris Bourse are more likely to submit limit orders when the limit order book contains
relatively few orders, or when the bid–ask spread widens. Similar results are found for other limit
order markets: for example,Griffiths, Smith, Turnbull and White(2000) andRanaldo(2003). If
the execution probabilities for limit orders increase when there are fewer orders in the limit
order book or when the bid–ask spread widens, the evidence may be consistent with the traders
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responding to changes in the trade-offs.Harris and Hasbrouck(1996) find that the expected
pay-offs from limit orders relative to market orders increase when the bid–ask spread widens
on the New York Stock Exchange. Traders change their order submission strategies as the bid–
ask spread widens, tending to submit more limit orders. But are the traders’ order submissions
consistent with the theories based on the trade-offs?

We show how to determine if the traders’ order submissions are consistent with theories
based on the trade-offs. We provide empirical restrictions of a model of optimal order
submissions based on the trade-offs, and develop a semiparametric test of them. We compute
the test using the order flow and the limit order book for Ericsson, one of the most actively
traded stocks on the Stockholm Stock Exchange.

A trader’s optimal order submission in our model depends on the trader’s valuation for the
asset, and the trade-offs between the order price, the execution probability and the picking off
risk of alternative order submissions. The optimal order submission strategy is a monotone step
function of the trader’s valuation, characterized in terms of threshold valuations. The threshold
valuations are functions of the order prices and the trader’s subjective beliefs about the execution
probabilities and picking off risks. If the traders submit orders optimally according to our model,
then the threshold valuations evaluated at the order prices, execution probabilities and picking
off risks of the traders’ actual order submissions form a monotone sequence. We use the actual
order submissions, and the realized order fills to form estimates of execution probabilities and
picking off risks. We use the estimates of the execution probabilities and picking off risks to
form estimates of the threshold values at the actual order submissions, and test if they form a
monotone sequence. The test does not require knowledge of the traders’ valuations for the asset,
or knowledge of the execution probabilities and picking off risks of orders not submitted by the
traders.

A buy limit order fills after it becomes the highest-priced unfilled limit order in the book
and a sell market order is submitted by another trader. Consequently, traders must predict
future traders’ order submissions to determine the execution probabilities and the picking off
risks associated with alternative order submissions. In a stationary environment, the execution
probabilities and picking off risks associated with alternative order submissions have sample
analogues.Hotz and Miller(1993) andManski(1993) suggest using non-parametric methods to
estimate agents’ conditional expectations to identify and estimate structural models. We follow
such an approach, using non-parametric methods to estimate the execution probabilities and
picking off risks for alternative order submissions. We condition on information in the limit
order book and lagged trading activity to measure information available to the traders.

Our approach is related to work on structural estimation of auction models. The optimal bid
in a first-price sealed bid auction with private values depends on the bidder’s private value and the
trade-off between the bid and the probability of the bid winning the auction.Guerre, Perrigne and
Vuong (2000) provide necessary and sufficient conditions for the observed bids in a first-price
sealed bid auction to be the Bayesian Nash equilibrium of an independent private values auction.
One condition is that a function of the observed bids satisfies a monotonicity condition.Laffont
and Vuong(1996) andGuerreet al. (2000) point out that the monotonicity condition can be used
to test auction theory. The monotonicity restriction of the optimal order submission strategy that
we test is a necessary condition for optimality of the observed order submissions given the actual
dynamics of the limit order book.

In our sample, we do not reject the monotonicity restriction for buy or sell orders considered
separately, but reject the monotonicity restriction for buy and sell orders considered jointly. The
expected pay-offs from submitting limit orders with low execution probabilities are too low
relative to the expected pay-offs from submitting limit orders with high execution probabilities
to rationalize all the order submissions in our sample.
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2. DESCRIPTION OF THE MARKET AND THE SAMPLE

In 1990 the Stockholm Stock Exchange completed the introduction of a limit order market
system, the Stockholm Automated Exchange. Here, we briefly describe the Stockholm
Automated Exchange and our sample. There are no floor traders, market makers, or specialists
with unique quoting obligations or trading privileges. Trading is continuous from 10 a.m. to
2:30 p.m. with the opening price determined by a call auction. All order prices are required to be
multiples of a fixed tick size. When prices are below 100 SKr, the tick size is 0·5 SKr and when
prices are above 100 SKr, the tick size is 1 SKr. During the sample period, $1 was approximately
equal to 6·25 SKr. The order quantity must be a multiple of a round lot, with a typical round lot
quantity of 100 shares.

All trading is between market and limit orders. Unfilled limit orders are stored in the
electronic limit order book and are automatically filled by market orders. Unfilled limit orders in
the order book are prioritized first by price and then by time of submission. The prices of the sell
limit orders in the book are called ask quotes and the prices of the buy limit orders in the book
are called bid quotes. If a market order is for a smaller quantity than the quantity at the best quote
in the limit order book, the market order will completely fill at a price equal to the best quote. If a
market order cannot be filled completely at the best quote, it will transact with multiple quotes in
the book until either it is completely filled or the book is empty. Any unfilled portion of a market
order converts into a limit order.

A limit order can be cancelled at any time at no cost. Traders can also submit hidden limit
orders, where only a portion of the order quantity is displayed in the order book. The hidden part
of a limit order has lower priority than all displayed limit orders at the same order price level.

Orders can only be directly submitted to the trading system by exchange member firms.
A member firm submits orders as a broker for its customers and as a dealer for itself. During
our sample period, there were 24 exchange member firms. We refer to the member firms as
brokers. The brokers are directly connected to the trading system and observe all price quotes
with the corresponding total order quantities in the limit order book. The brokers’ information
is updated almost instantaneously after order submissions or cancellations. Traders who are not
directly connected to the system can obtain information about the five best bid and ask quotes
and the corresponding order quantities in the limit order book through information vendors such
as Reuters or Telerate.

The Stockholm Stock Exchange was the only authorized marketplace for equity trading in
Sweden until 1 January, 1993. But many of the stocks listed on the exchange were also cross-
listed on foreign exchanges; trading in London on the international stock exchange automated
quotation (SEAQ) system and in the U.S. on the national association of securities dealers
automated quotation (NASDAQ) system accounted for a significant fraction of the trading of
many Swedish stocks.

Brokers can settle trades larger than 100 round lots outside the Stockholm Automated
Exchange system. An internal cross is a trade of 100–500 round lots where the broker represents
both sides of the trade. A block trade is a trade greater than 500 round lots.

We obtained the order records and the trade records directly from the Stockholm Automated
Exchange system for the 59 trading days between 3 December, 1991 and 2 March, 1992
for Ericsson. The order records is a chronological list of order submissions, changes in the
outstanding order quantities, and order cancellations. The trade records is a chronological list of
transactions. Each limit order receives a unique code, and subsequent changes in the outstanding
order quantity are recorded using the same code. We combine changes in the outstanding order
quantity and the transactions to determine whether a change in the order quantity was caused by
a trade or a cancellation. We reconstruct complete transaction and cancellation histories for limit
orders and the entire history of the order book over our sample.
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TABLE 1

Daily trading activity

Mean Std dev. Min. Max.

Daily closing mid-quote (SKr) 110·15 9·19 89·00 127·00
Daily close-to-close return (%) 0·21 3·04 −6·31 11·44
Daily close-to-close return (%) 0·10 2·45 −16·95 13·69
on NASDAQ, 2 January, 1989–31 December, 1993
Number of active brokers per day 19·28 2·28 14·00 23·00

Daily trading volume in millions of SKr
Stockholm Automated Exchange 38·77 19·53 11·58 114·88
Internal crosses 12·20 9·04 1·48 57·51
Block trades 0·39 0·92 0·00 5·45
After-hours trades 4·66 6·15 0·00 28·26
Total trading volume 56·02 29·52 13·06 201·28

Daily number of Stockholm Automated Exchange orders, 10:03 a.m.–2:30 p.m.
All orders 364·23 141·13 128 733
Limit orders 212·18 77·58 73 408
Market orders 152·04 67·14 55 330

The table reports summary statistics on the daily trading activity of Ericsson. The daily close-
to-close returns are calculated using the mid-quotes. The daily close-to-close returns for Ericsson
shares traded on NASDAQ are calculated using daily data from the Center for Research in Security
Prices. The number of active brokers per day is defined as the number of brokers who made at least
one trade on a given trading day.

We have detailed information, but there are limitations. We only identify the broker
submitting the order; we cannot separately identify the orders that a broker submits for his
customers from the orders that a broker submits for himself. We do not observe whether or
not an order includes a hidden order quantity component. We only infer that an order must have
involved a hidden portion if the displayed portion of the hidden order is executed in full. In
our sample, there are few hidden orders whose displayed portions do fully execute. The first
limitation causes us to focus on how a representative trader decides on his order submissions.

Some limit orders remain in the order book at the end of our sample period. To minimize
the effects of the resulting censoring bias on our empirical work, we do not use orders submitted
during the last two days of our sample. Only 2·8% of the orders remain in the system for more
than two trading days, and 62·3% of such orders are eventually cancelled. We discard orders
submitted during the first 3 minutes of the trading day to ensure that the sample reflects only
continuous trading. The filtering rules leave us with 20,760 observations of individual order
submissions and their realized fills.

Table 1 reports descriptive statistics on the daily trading activity for Ericsson. The tick
size varies between 0·5 SKr and 1 SKr since the price is both less than 100 SKr and greater than
100 SKr in our sample. The mean daily close-to-close return is 0·21% with a standard deviation
of 3·04%. For comparison, the table also reports statistics on close-to-close returns computed
using prices of Ericsson shares on NASDAQ from 2 January, 1989, through to 31 December,
1993, using data from the Center for Research in Security Prices. The return distribution in our
sample is not unusual.

The fourth row ofTable 1 reports information on the daily number of active brokers in
Ericsson. All 24 brokers are active in Ericsson over the sample period. Sorting the brokers by
their share of trading volume, the top three brokers each transact 10% to 11%, and the next seven
brokers each transact 5% to 9%. The shares are almost identical for order submissions. No single
broker dominates the trading of Ericsson.
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TABLE 2

Order submissions

Order Number of orders Execution probability Time to execution Order quantity
Mean Mean Mean Std dev.

Buy orders
Market 6031 1·00 0·00 19·72 39·21
1 Tick limit 4225 0·68 24·55 25·14 37·60
2 Tick limit 992 0·33 73·94 29·63 44·58
3 Tick limit 893 0·12 172·33 14·65 32·38

Sell orders
Market 4044 1·00 0·00 30·73 48·90
1 Tick limit 3212 0·63 18·31 36·08 49·48
2 Tick limit 800 0·28 84·21 37·08 44·87
3 Tick limit 563 0·13 170·95 23·73 91·29

The table reports descriptive statistics for the order submissions in Ericsson. The execution probability
is defined as the fraction of the order quantity that fills within two trading days of the order submission.
The time to execution is the number of minutes elapsed from the order submission until the order
executes. When there are multiple fills we compute the time to execution by weighing each fill
according to the fraction of the order quantity that is filled. Fills that occur later than two trading
days after the order was submitted are ignored. The order quantity is measured in 100’s of shares.
There are 20,760 orders.

The fifth row of Table 1 reports the daily trading volume on the Stockholm Automated
Exchange. The sixth through eighth rows ofTable1 report descriptive statistics for orders crossed
internally by brokers, block trades during regular trading hours, and after-hours trading. The
ninth row reports the total trading volume. In our subsequent analysis, we focus on traders’ order
submissions within the Stockholm Automated Exchange and abstract from traders’ decisions to
use the automated system itself or not.

The first column ofTable2 reports the number of buy and sell market and limit orders.
The second column reports the mean execution probabilities, equal to the mean of the fraction of
the limit order quantity that is filled within two trading days of order submission. The execution
probabilities show the unconditional trade-off between the execution probability and the order
price; limit orders at prices farther away from the quotes have lower execution probabilities than
limit orders with prices closer to the quotes. The third column ofTable2 reports the mean time
to execution for limit orders. Limit orders at prices farther away from the quotes take longer to
execute than limit orders at prices closer to the quotes. The final three columns ofTable2 report
the mean and standard deviation of the order quantity.

The top plot inFigure 1 is the sample survivor function for limit orders. The survivor
function evaluated att is the probability that a limit order remains outstanding for at leastt
minutes. If a limit order is completely filled at timet , the order’s execution time ist . If a limit
order is partially filled at timet , we weight the fill time by the fraction of the submitted order
quantity filled to compute the order’s execution time. Subsequent order fills or cancellations are
weighted in the same manner. Most limit orders leave the book quickly; only 4·6% of the limit
orders last for more than one trading day (270 min). The bottom two plots inFigure1 show
the cumulative distribution function for order execution and cancellation times. Although the
cumulative distributions for execution and cancellation times are different, most executions or
cancellations do occur within 3 h (180 min) of the order submission.

The first six rows ofTable3 report information about the order quantities in the limit order
books. The average quantity at the best bid or ask quote is roughly nine times the average market
order quantity; only 12 market orders in our sample are for quantities that are larger than the
quantities available in the order book at the best quote at the time of order submission. The order
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FIGURE 1

Limit order execution and cancellation times.
The top graph plots the survivor function for limit orders. The survivor function at any time is defined as the probability
that a limit order is outstanding a given number of minutes after it was submitted. The middle and the bottom graphs
plot the cumulative distribution functions for the limit order execution and cancellation times. All three functions are
computed for orders submitted between 10:03 a.m. and 2:30 p.m. There are a total of 11,760 limit orders submitted. The
survivor and distribution functions are calculated by assigning a weight to each observation equal to the fraction of the
order quantity filled or cancelled. Limit orders submitted during the last two trading days in our sample are not used in

the calculations

quantities in the limit order book are volatile. The standard deviations of the order quantities at
the three best bid or ask quote levels are all greater than 173 round lots. The standard deviations
of the cumulative order quantities are all greater than 294 round lots.

The last six rows ofTable3 provide information on the bid–ask spread and the distances
between price quotes in the book. The bid–ask spread typically is one tick, and relatively constant
over our sample. The distances between other price quotes in the book behave similarly.

On average, there is a trade-off between order price, execution probability and the length of
time that an order remains unfilled in the limit order book. While most orders are either executed



HOLLIFIELD ET AL. EMPIRICAL ANALYSIS OF LIMIT ORDER MARKETS 1033

TABLE 3

Order books

Mean Std dev. Min. Max.

Order quantities at quotes (100’s of shares)
3rd Ask 169·8 175·9 1·0 1061·1
2nd Ask 260·8 203·0 1·0 1161·0
1st Ask 200·9 194·1 1·0 1314·0
1st Bid 185·9 173·8 1·0 1504·2
2nd Bid 242·9 217·7 1·0 1504·2
3rd Bid 167·9 190·9 1·0 1355·2

Cumulative order quantities (100’s of shares)
1st+ 2nd+ 3rd Ask 631·5 368·8 13·0 1935·6
1st+ 2nd Ask 461·7 294·9 2·0 1809·0
1st+ 2nd Bid 428·8 310·2 5·0 2176·9
1st+ 2nd+ 3rd Bid 596·8 396·0 15·0 2730·4

Distance between price quotes (ticks)
Bid–ask spread 1·1 0·3 1·0 6·0
3rd Ask–2nd ask 1·1 0·4 1·0 6·0
2nd Ask–1st ask 1·1 0·2 1·0 6·0
1st Bid–2nd bid 1·1 0·2 1·0 8·0
2nd Bid–3rd bid 1·1 0·5 1·0 10·0

Descriptive statistics for the order books. The statistics in the
table are computed for each order book observed in the market
immediately prior to an order submission. There are 20,760
observations.

or cancelled quickly, the mean time to execution is more than an hour for two and three tick
limit orders. When time elapses between order submission and execution, the order may fill
when there is a change in the asset’s value; limit orders may face picking off risk. Finally, the
number of orders in the limit order book itself is volatile—observing such information may help
a trader predict execution probabilities and picking off risks. In the next section, we model a
representative trader’s optimal order submission strategy in such a market.

3. MODEL

3.1. Assumptions

At time t , one trader has the opportunity to submit an order. The trader is risk neutral,
characterized by his valuation for the asset,vt , and the quantity that he wishes to trade,qt . We
decomposevt into two components,

vt = yt + ut . (1)

The random variableyt is the common value of the asset att ; one interpretation is that
the common value is equal to the traders’ expectations of the liquidation value of the asset. The
common value changes as the traders learn new information, with

yt+1 = yt + δt+1. (2)

Innovations in the common valueδt+1 satisfy

Et [δt+1] = 0, (3)

where the subscriptt denotes conditioning on information available after the common value is
known at t , but before the trader att arrives. The distribution of common value innovations
has bounded support. Common value innovations are drawn from a stationary process, and the
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distribution of the innovations is conditioned on the history of common value innovations through
a finite-dimensional vector of sufficient statistics. Conditioning on a set of sufficient statistics
allows for persistence in the higher-order moments of the innovations. For example, current
common value volatility may depend on lagged common value volatility.

The random variableut is the trader’s private value for the asset. Different traders can have
different private values—heterogeneity in the traders’ private values for the asset creates potential
gains from trade. Traders may have different private values as a result of endowment shocks or
differences in their current portfolios. The private value is drawn from a continuous distribution

Prt (ut ≤ u) ≡ Gt (u), (4)

where, as above, the subscriptt denotes conditioning on information available after the common
value is known att , but before the trader att arrives. The distribution of the private value has
bounded support. The private value is drawn from a stationary process and the conditional
distribution of the private value depends on the same finite-dimensional vector of sufficient
statistics as the conditional distribution of common value innovations. For example, the current
distribution of the private values may depend on lagged common value volatility.

Once a trader arrives at the market, his private value remains fixed while he has an order
outstanding. At a random time,t + τcancel, after the trader arrives at the market, the pay-off from
any unfilled limit orders submitted by the trader will go to zero, causing the trader to cancel any
unfilled limit orders. The trader does not know the cancellation time at timet . The conditional
distribution of the cancellation time depends on the same finite-dimensional vector of sufficient
statistics as the common value innovations. For example, the distribution of the cancellation time
may depend on lagged common value volatility. Letϒ < ∞ be the maximum possible lifetime
of the order,

Prt (τcancel≤ ϒ < ∞) = 1. (5)

The assumptions of bounded common value innovations, bounded private values and
bounded cancellation times are used to show that orders in the limit order book are a bounded
distance away from the common value.

The trader’s desired order quantity,qt , is independent of the trader’s valuation, and is drawn
from a distribution with bounded support. The conditional distribution of the order quantity
depends on the same set of sufficient statistics as the common value innovations. For example,
the distribution of order quantity may depend on lagged common value volatility.

At t , the trader has a single opportunity to submit either a market order or a limit order.
The trader observes the current limit order book, the current common value, and the history of
common value innovations. The trader pays a cost ofc per share to submit an order. The cost is
the same for all types of orders submitted.

The decision indicatorsdsell
t,s ∈ {0,1} for s = 0,1, . . . , S and dbuy

t,b ∈ {0,1} for b =

0,1, . . . , B denote the trader’s order submission att . The trader chooses an order submission
from a finite set:S< ∞ andB < ∞. If the trader submits a sell market order, the order price is
the best bid quote anddsell

t,0 = 1. If the trader submits a sell limit order at the prices ticks above

the current best bid quote,dsell
t,s = 1. If the trader submits a buy market order, the order price is

the best ask quote anddbuy
t,0 = 1. If the trader submits a buy limit order at the priceb ticks below

the current best ask quote,dbuy
t,b = 1. If the trader does not submit any order at timet , dsell

t,s = 0

for all s anddbuy
t,b = 0 for all b.

Suppose a trader with valuationvt = yt + ut at t submits a buy order of quantityqt at a
price pbuy

t,b , b ticks below the current best ask quote:dbuy
t,b = 1. Defined Qt,t+τ as the number

of shares of the order submitted att that transact att + τ . If the realized cancellation time is
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t + τcancel, d Qt,t+τ = 0 for all τ ≥ τcancel. If the trader submits a limit order, he will not know
if or when the order will execute in the future:d Qt,t+τ for τ > 0 is a random variable. For any
possible realization of the future order flow, the future common value and the cancellation time,
the total quantity of the order that eventually transacts must be less than the order quantity∑ϒ

τ=1
d Qt,t+τ ≤ qt . (6)

The pay-off that the trader receives from transactingd Qt,t+τ at timet + τ at pricepbuy
t,b is

d Qt,t+τ (yt+τ + ut − pbuy
t,b ) = d Qt,t+τ (vt − pbuy

t,b )+ d Qt,t+τ (yt+τ − yt ), (7)

where yt+τ is the common value att + τ . The term d Qt,t+τ (vt − pbuy
t,b ) is the pay-off

that a transaction ofd Qt,t+τ would earn upon immediate execution at pricepbuy
t,b . The term

d Qt,t+τ (yt+τ − yt ) is the number of shares transacted inτ periods multiplied by the change in
the common value. Summing over all possible transaction times for the order and including the
cost of submitting the order, the realized pay-off is

Ut,t+ϒ =

∑ϒ

τ=0
d Qt,t+τ (vt − pbuy

t,b )+

∑ϒ

τ=0
d Qt,t+τ (yt+τ − yt )− qtc. (8)

If the order does not execute,d Qt,t+τ = 0 for 0 ≤ τ ≤ ϒ , and the trader’s realized pay-off
is −qtc.

We define the execution probability as

ψ
buy
t (b,qt ) ≡ Et

[∑ϒ

τ=0

d Qt,t+τ

qt

∣∣∣∣ dbuy
t,b = 1,qt

]
(9)

and the picking off risk as

ξ
buy
t (b,qt ) ≡ Et

[∑ϒ

τ=0

d Qt,t+τ

qt
(yt+τ − yt )

∣∣∣∣ dbuy
t,b = 1,qt

]
. (10)

The conditional expectations in equations (9) and (10) do not depend on the trader’s private
value. If the order is a market order, the execution probability is one and the picking off risk
is zero. In taking the expectations in equations (9) and (10), the trader is accounting for the
different possible realizations of other traders’ future order submissions, future common values
and cancellation times.

The trader’s expected pay-off is the expected value of equation (8), conditional on the
trader’s information set, which includes the current limit order book; the current common value;
the history of common value innovations; the trader’s private value; the trader’s order quantity;
and the trader’s order submission:

Et [Ut,t+ϒ | dbuy
t,b = 1,ut ,qt ] = qtψ

buy
t (b,qt )(vt − pbuy

t,b )+ qtξ
buy
t (b,qt )− qtc. (11)

The first term in the trader’s expected pay-off is the expected number of shares that will
eventually transact multiplied by the pay-off per share for an immediate transaction at pricepbuy

t,b .
The second term in the trader’s expected pay-off is the covariance of changes in the common
value with the quantity of the order that transacts. The final term in the trader’s expected pay-off
is the cost of submitting the order. The expected pay-off to a trader submitting a sell order forqt

shares at a prices ticks above the current best bid quote is defined similarly.
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The trader submits the order that maximizes his expected pay-off, conditional on his
information, private value, and order quantityqt ,

max
{dsell

t,s }
S
s=0,{d

buy
t,b }

B
b=0

∑S

s=0
dsell

t,s Et [Ut,t+ϒ | dsell
t,s = 1,ut ,qt ]

+

∑B

b=0
dbuy

t,b Et [Ut,t+ϒ | dbuy
t,b = 1,ut ,qt ], (12)

subject to

dsell
t,s ∈ {0,1}, for s = 0,1, . . . , S, dbuy

t,b ∈ {0,1}, for b = 0,1, . . . , B, (13)∑S

s=0
dsell

t,s +

∑B

b=0
dbuy

t,b ≤ 1. (14)

Equation (14) is the constraint that at most one order is submitted. Letdsell∗
t (s,ut ,qt ) and

dbuy∗
t (b,ut ,qt ) be the optimal strategy, detailing the trader’s submission as a function of his

beliefs and information, private value and order quantity.
Foucault(1999) solves for the unique stationary equilibrium in a model satisfying our

assumptions. InFoucault(1999), common value innovations are independent and identically
distributed binomial random variables; traders’ private values are independent and identically
distributed binomial random variables; limit orders last at most one period; the traders’ desired
order quantity is one unit; and the order submission cost is zero. Our model allows for more
general distributions for the common value innovations, the private values, cancellation times
and desired order quantity, and allows for positive order entry costs. Our characterization of the
optimal order submission strategy provides a necessary condition for a Nash equilibrium in our
model.

3.2. Optimal order submission strategy

Lemma 1. Suppose that a trader with private value u and quantity q optimally submits a
buy order at price b≥ 0 ticks below the ask quote: dbuy∗

t (b,u,q) = 1.

(1) A trader with private value u′ > u and quantity q submits a buy order at a price b′ ticks
below the ask quote: dbuy∗

t (b′,u′,q) = 1, with the execution probability higher at b′ than
at b,

ψ
buy
t (b′,q) ≥ ψ

buy
t (b,q). (15)

(2) Suppose that the execution probabilities are strictly decreasing in the distance between
the limit order price and the best ask quote,ψbuy

t ( j + 1,q) < ψ
buy
t ( j,q), for all

j = 0,1, . . . , B − 1. Then a trader with private value u′ > u for q shares submits a
buy order at a price b′ ticks below the ask quote: dbuy∗

t (b′,u′,q) = 1, with b′
≤ b.

Analogous results hold on the sell side.

The optimal order submission depends on the trader’s valuation. The common value is fixed
at t so that the only source of heterogeneity in the decision att is the trader’s private value. If the
trader buys, the higher the trader’s private value, the higher the execution probability is for the
trader’s optimal buy order. If the trader sells, the lower the trader’s private value, the higher the
execution probability is for the trader’s optimal sell order.

Lemma1 and the discrete price grid imply that we can partition the set of valuations into
intervals. All traders wishing to trade the same quantity whose valuations lie within the same
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interval submit the same order. Define the threshold valuationθ
buy
t (b,b′,q) as the valuation of

a trader who is indifferent between submitting a buy order at pricepbuy
t,b and a buy order at price

pbuy
t,b′ ,

θ
buy
t (b,b′,q) = pbuy

t,b +

(
pbuy

t,b − pbuy
t,b′

)
ψ

buy
t (b′,q)+

(
ξ

buy
t (b′,q)− ξ

buy
t (b,q)

)
ψ

buy
t (b,q)− ψ

buy
t (b′,q)

. (16)

The threshold valuation for a buy order at pricepbuy
t,b and not submitting an order is

θ
buy
t (b,NO,q) = pbuy

t,b +
−ξ

buy
t (b,q)+ c

ψ
buy
t (b,q)

. (17)

The threshold valuation for a sell order at pricepsell
t,s and a sell order price atpsell

t,s′ is

θsell
t (s, s′,q) = psell

t,s −

(
psell

t,s′ − psell
t,s

)
ψsell

t (s′,q)+
(
ξsell

t (s,q)− ξsell
t (s′,q)

)
ψsell

t (s,q)− ψsell
t (s′,q)

. (18)

The threshold valuation for a limit sell order at pricepsell
t,s and not submitting an order is

θsell
t (s,NO,q) = psell

t,s −
ξsell

t (s,q)+ c

ψsell
t (s,q)

. (19)

The threshold valuation for a sell order at pricepsell
t,s and a buy order at pricepbuy

t,b is

θt (s,b,q) = psell
t,s +

(
pbuy

t,b − psell
t,s

)
ψ

buy
t (b,q)−

(
ξsell

t (s,q)+ ξ
buy
t (b,q)

)
ψsell

t (s,q)+ ψ
buy
t (b,q)

. (20)

Let B∗
t (q) index the set of buy order prices that are optimal for some trader who wishes to

tradeq shares at timet ,

B∗
t (q) ≡

{
b

∣∣∣ dbuy∗
t (b,u,q) = 1 for someu

}
, (21)

with elementsb∗

i,t (q), for i = 1, . . . , I , ordered by the execution probabilities,

ψ
buy
t (b∗

i,t (q),q) > ψ
buy
t (b∗

i +1,t (q),q). (22)

Here,b∗

1,t (q) indexes the buy order with the highest execution probability that some trader would
submit, andb∗

I ,t (q) indexes the buy order with lowest execution probability that some trader
would submit. Typicallyb∗

1,t (q) = 0; a market buy order is an optimal buy order submission for
some trader. DefineS∗

t (q) similarly.

Lemma 2.

θ
buy
t (b∗

1,t (q),b
∗

2,t (q),q) > θ
buy
t (b∗

2,t (q),b
∗

3,t (q),q) > · · · > θ
buy
t (b∗

I −1,t (q),b
∗

I ,t (q),q),

(23)

θsell
t (s∗

J−1,t (q), s
∗

J,t (q),q) > θsell
t (s∗

J−2,t (q), s
∗

J−1,t (q),q) > · · · > θsell
t (s∗

1,t (q), s
∗

2,t (q),q),

(24)

θ
buy
t (b∗

I −1,t (q),b
∗

I ,t (q),q) > θt (s∗

J,t (q),b
∗

I ,t (q),q) > θsell
t (s∗

J−1,t (q), s
∗

J,t (q),q). (25)
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To describe the optimal decision rule, define the marginal thresholds for sellers and buyers
as

θ
buy
t (Marginalt (q),q) = max(θt (s∗

J,t (q),b
∗

I ,t (q),q), θ
buy
t (b∗

I ,t (q),NO,q)),

θsell
t (Marginalt (q),q) = min(θt (s∗

J,t (q),b
∗

I ,t (q),q), θ
sell
t (s∗

J,t (q),NO,q)).
(26)

If the buyer and seller marginal thresholds are equal to each other, all traders find it optimal to
submit an order. Otherwise, some traders find it optimal not to submit any order.

Lemma 3. The optimal order submission strategy is

dbuy∗
t (b,u,q) = 1, if



b = b∗

1,t (q) and θ
buy
t (b∗

1,t (q),b
∗

2,t (q),q) ≤ yt + u,

or

b = b∗

i,t (q) for i = 2, . . . , I − 1 and

θ
buy
t (b∗

i,t (q),b
∗

i +1,t (q),q) ≤ yt + u < θ
buy
t (b∗

i −1,t (q),b
∗

i,t (q),q),

or

b = b∗

I ,t (q) and

θ
buy
t (Marginalt (q),q) ≤ yt + u < θ

buy
t (b∗

I ,t (q),b
∗

I −1,t (q),q),

(27)

dsell∗
t (s,u,q) = 1, if



s = s∗

1,t (q), and yt + u < θsell
t (s∗

1,t (q), s
∗

2,t (q),q),

or

s = s∗

j,t (q), for j = 2, . . . , J − 1 and

θsell
t (s∗

j −1,t (q), s
∗

j,t (q),q) ≤ yt + u < θsell
t (s∗

j,t (q), s
∗

j +1,t (q),q),

or

s = s∗

J,t (q), and

θsell
t (s∗

J−1,t (q), s
∗

J,t (q),q) ≤ yt + u < θsell
t (Marginalt (q),q),

(28)

otherwise,

dbuy∗
t (b,u,q) = dsell∗

t (s,u,q) = 0. (29)

Let Vt (yt + u,q) be the indirect utility function for a trader att with valuation yt + u
and quantityq. The indirect utility function is computed by substituting the optimal strategy in
equations (27) through (29) into the trader’s objective function, equation (12).

Lemma 4. Vt (yt + u,q) has the following properties:

(1) Vt (yt + u,q) is a positive, convex function of yt + u.
(2) Suppose that dbuy∗

t (b,u,q) = 1 for some(b,u,q). Then for u′ > u, Vt (yt + u′,q) >
Vt (yt + u,q).

(3) Suppose that dsell∗
t (s,u,q) = 1 for some(s,u,q). Then for u′ < u, Vt (yt + u′,q) >

Vt (yt + u,q).

Figure2 is an example ofVt (yt + u,q). Here,S∗
t (1) = {0,1,2} andB∗

t (1) = {0,1,2}:
market, one tick, and two tick limit buy and sell orders are optimal for a trader with some
valuation and the order quantity is one share. The expected pay-offs as a function of the trader’s
valuation from submitting sell orders are plotted with dashed lines and the expected pay-offs
from submitting buy orders are plotted with dashed–dotted lines. From equation (11), the trader’s
expected pay-off from submitting any particular order is a linear function of his valuation, with
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FIGURE 2

Indirect utility function.
The graph is an example of the indirect utility function. The order quantity is set equal to one. The horizontal axis is the
trader’s valuation, and the vertical axis is the expected pay-off from alternative order submissions. Sell orders are plotted
with dashed lines (- - -) and buy orders are plotted with dashed–dotted lines (-.-.). The indirect utility function is plotted

with the thick solid line (—). The horizontal axis and the vertical axis have different scale

slope equal to the execution probability for that order. The indirect utility function is plotted with
a thick solid line and is the upper envelope of the pay-offs for different order submissions.

A change in the cost of submitting the order,c, leads to a parallel shift in the expected pay-
off from all order submissions. A change in the picking off risk for any particular order leads
to a parallel shift in the expected pay-off from submitting that particular order, while keeping
unchanged the expected pay-off from submitting any other order. A change in the execution
probability for any particular order leads to a shift in the slope in the expected pay-off from
submitting that particular order, while keeping unchanged the expected pay-off from submitting
any other order.

Geometrically, the thresholds are the valuations for which the expected pay-offs intersect.
For example, the threshold for a sell market order and a sell limit order at one tick from the best
bid quote isθsell

t (0,1,1); a trader with a valuation less thanθsell
t (0,1,1) submits a sell market

order. The thresholds associated with submitting any particular order and submitting no order
are the valuations where the expected pay-offs cross the horizontal axis. Here,θsell

t (2,NO,1) <

θt (2,2,1) andθbuy
t (2,NO,1) > θt (2,2,1). If the trader’s valuation is betweenθsell

t (2,NO,1)

andθbuy
t (2,NO,1), the trader does not submit any order.
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We now consider the effects of changing the order submission cost, the picking off
risks, and the execution probabilities on the traders’ optimal order submission strategy. The
order submission cost is a parameter of the model, while the picking risks and the execution
probabilities are not exogenous parameters of the model. But the picking off risks and the
execution probabilities can change as the traders’ information changes.

Consider increasing the order submission cost,c. The expected pay-offs for submitting any
order decrease, with all pay-off curves shifting down by the same amount. As a consequence,
only the thresholds associated with submitting an order and submitting no order change. The
marginal buy threshold increases and the marginal sell threshold decreases; more traders will
choose not to make an order submission.

Consider increasing the picking off risk for the one tick sell limit order. The expected pay-
offs for submitting a one tick sell limit order decrease, and the expected pay-offs for any other
order submissions do not change. The expected pay-offs for a one tick sell limit order make a
parallel downward shift, implying that the threshold for the one tick and two tick sell limit orders
decreases and the threshold for the one tick sell limit order and sell market order increases.
The pay-off curve for a sell market order is steeper than the pay-off curve for the two tick sell
limit order; the threshold associated with the market order increases by less than the threshold
associated with the two tick order decreases.

Consider increasing the execution probability for the one tick sell limit order. The expected
pay-offs for submitting a one tick sell limit order increase, and the expected pay-offs for any
other order submissions do not change, implying that the threshold for the one tick and two tick
sell limit orders increases and the threshold for the one tick sell limit order and market order
decreases.

Suppose that a buy market order arrives and trades against an existing sell limit order. As
a consequence, the order book changes, and the traders’ information changes. The resulting
changes lead to a change in either the best quotes, the execution probabilities, the picking off
risks, or some combination of them. Such changes, in turn, lead to a change in the thresholds.
The optimal order submission strategy inFigure2 therefore changes when an order is submitted.

The optimal submission strategy in equations (27)–(29) can be used to compute the
probability of a trader submitting a sell order at a prices∗

1,t (q) ticks above the current best bid
quote, conditional on the arrival of a trader who wishes to tradeq shares. Typically,s∗

1,t (q) = 0—
a sell market order is optimal for some trader. The probability is

Prt (d
sell∗
t (s∗

1,t (q),ut ,q) = 1 | q) = Prt (yt + ut ≤ θsell
t (s∗

1,t (q), s
∗

2,t (q),q) | q)

= Gt (θ
sell
t (s∗

1,t (q), s
∗

2,t (q),q)− yt ). (30)

The last line follows from the definition ofGt in equation (4) and because the quantity and the
private value are independent random variables. Similarly, forj = 2, . . . , J − 1

Prt (d
sell∗
t (s∗

j,t (q),ut ,q) = 1 | q)

= Gt (θ
sell
t (s∗

j,t (q), s
∗

j +1,t (q),q)− yt )− Gt (θ
sell
t (s∗

j −1,t (q), s
∗

j,t (q),q)− yt ), (31)

and for j = J

Prt (d
sell∗
t (s∗

J,t (q),ut ,q) = 1 | q)

= Gt (θ
sell
t (Marginalt (q),q)− yt )− Gt (θ

sell
t (s∗

J−1,t (q), s
∗

J,t (q),q)− yt ). (32)

Similar expressions to equations (30) through (32) hold for buy orders.
Equations (30) through (32) can be used to interpret previous empirical studies of order

submissions. For example,Biaiset al. (1995) find that a larger ask depth increases the probability
of a sell market order and decreases the probability of a sell limit order. A larger ask depth may
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imply a smaller execution probability for a one tick sell limit order, increasing the threshold
valuation for a sell market order and a one tick sell limit order. From equations (30) and (31),
increasing the threshold valuation increases the probability of a sell market order and decreases
the probability of a one tick sell limit order.

Biaiset al. (1995) also find that traders are more likely to submit limit orders when the bid–
ask spread widens. Suppose the bid–ask spread widens from one to two ticks, holding the best
ask quote, the common value, the execution probabilities and picking off risks constant. Such
an increase in the spread would decrease the threshold for a sell market order and a one tick
sell limit order. From equations (30) and (31), the probability of a sell market order decreases
and the probability of a one tick sell limit order increases. A widening of the spread may also
increase the execution probability for a one tick sell limit order. An increase in the execution
probability would decrease the threshold for a sell market order and a one tick sell limit order.
Again, the probability of a sell market order decreases and the probability of a one tick sell limit
order increases.

Equations (30) through (32) also provide two ways to interpret the autocorrelation in order
submissions documented in existing empirical work. First, the threshold valuations may be
autocorrelated if the limit order book changes only gradually causing the expected pay-offs
from different order submissions to be autocorrelated. Second, innovations in the common value
are correlated with the current order submission, and unless the book adjusts immediately to
innovations in the common value, such common value innovations will cause autocorrelated
order submissions.

Figure3 plots the optimal order submission strategy corresponding to the indirect utility
function in Figure 2. The distribution of private valuesGt is a mixture of three normal
distributions. The horizontal axis in the figure is the trader’s private value and the vertical axis
is the cumulative probability distribution of the private values. The probability of various order
submissions is determined by the thresholds, the common value and the distribution of private
valuesGt by equations (30) through (32).

For example, the probability of a trader submitting a sell market order isGt (θ
sell
t (0,1,1)−

yt ). A trader with valuation betweenθsell
t (1,2,1) − yt and θsell

t (0,1,1) − yt submits a
one tick sell limit order. The probability of a trader submitting a one tick sell limit order
is Gt (θ

sell
t (1,2,1) − yt ) − Gt (θ

sell
t (0,1,1) − yt ). A trader with a private value between

θsell
t (2,NO,1) and θbuy

t (2,NO,1) does not submit any order, and the probability of such an
event is

Prt (NO | q) = Gt (θ
buy
t (2,NO,1)− yt )− Gt (θ

sell
t (2,NO,1)− yt ). (33)

Given that a trader may find it optimal to submit no order, the probability of observing a sell
market order, conditional on observing any order submission, is

Prt (d
sell∗
t (s∗

1,t (q),ut ,q) = 1 | q,order submission) =
Gt (θ

sell
t (0,1,1)− yt )

1 − Prt (NO | q)
. (34)

From equations (30) through (32) the conditional probabilities of observing different
order submissions form an ordered qualitative response model, as defined byAmemiya(1985,
Definition 9.3.1, p. 292). The conditional choice probabilities can be used to estimate the private
value distribution using a sample of order submissions and estimates of the thresholds and the
common value. The estimation method for the private values distribution must allow for the
possibility that some traders may choose not to make any order submission.
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FIGURE 3

Optimal order submission strategy.
The graph is an example of the optimal order submission strategy. The probabilities of observing different order
submissions are determined by the threshold valuations, the common value and the distribution of private values. The
threshold valuations are computed using equations (16) through (19). The distribution of the private valuesGt is a

mixture of three normal distributions

3.3. An empirical implication of the optimal order submission strategy

We use Lemma2 to develop an empirical test of the model. The test does not require
knowledge ofGt but does require knowledge of actual order submissions; their prices, execution
probabilities and picking off risks. The logic of the test is illustrated by the following example.
Suppose the traders submit buy market orders, one tick buy limit orders, and two tick buy
limit orders. The best ask quote is 100, and the tick size is 1. The execution probabilities are
ψ

buy
t (0,1) = 1,ψbuy

t (1,1) = 0·7 andψbuy
t (2,1) = 0·6. For simplicity, the picking off risk for

all buy limit orders is zero. The order quantity is one share. Observing such data implies that the
model is false.

Figure4 plots the pay-offs for a trader submitting the three different buy orders against the
trader’s valuation: a dashed line for a buy market order, a light solid line for a one tick buy limit
order, and a dashed–dotted line for a two tick buy limit order. There is no valuation for which
the one tick buy limit order is optimal; the expected pay-off from submitting a one tick buy limit
order is always lower than the pay-offs from submitting a buy market order or a two tick buy
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FIGURE 4

Example of violation of the monotonicity of the thresholds.

The figure is an example where the threshold valuations do not satisfy the monotonicity conditionθ
buy
t (0,1,1) <

θ
buy
t (1,2,1). The execution probabilities for limit orders are monotonically decreasing in the distance between the limit

order price and the best ask quote. The execution probabilities areψ
buy
t (0,1) = 1, ψbuy

t (1,1) = 0·7, ψbuy
t (2,1) = 0·6;

the tick size is 1; the best ask quote is 100; and the picking off risks are equal to zero. The expected pay-off for a trader
submitting a buy market order (- - -), a one tick buy limit order (—) and a two tick buy limit order (-.-.) are plotted as a

function of the trader’s valuation

limit order. The threshold valuations are

θ
buy
t (0,1,1) = 100+

(1)(0·7)

(1·0 − 0·7)
= 102·33,

θ
buy
t (1,2,1) = 99+

(1)(0·6)

(0·7 − 0·6)
= 105·00.

(35)

In the example,θbuy
t (1,2,1) > θ

buy
t (0,1,1)—the threshold valuations violate the

monotonicity restriction. Since some traders submit a one tick buy limit order, the observed
order submissions are not the outcome of the optimization problem in equations (12) through
(14). Computing the threshold valuations requires only the execution probabilities for the orders
that are actually submitted. It does not require knowledge of the traders’ valuations or of the
distribution of the traders’ valuations, or knowledge of the execution probabilities and picking
off risks of orders not submitted by the traders.
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The example is not a knife-edge case. Hold the execution probability for a buy market
order equal to one and the execution probability for a two tick buy limit order equal to 0·6.
With execution probabilities for a one tick buy limit order between 0·6 and 0·75, the model is
inconsistent with traders submitting a one tick buy limit order. With execution probabilities for a
one tick limit order between 0·75 and 1·00, the model is consistent with traders submitting a one
tick buy limit order.

4. EMPIRICAL EVIDENCE

Lemma2 states that if the traders solve the optimization problem in equations (12)–(14), then
the thresholds evaluated at the orders chosen by the traders form a monotone sequence when
the orders are ranked according to the execution probabilities. We identify orders chosen by
the traders with positive probability in our sample and rank them according to their execution
probabilities. We compute the thresholds at the orders and test the monotonicity property.

We assume that the traders’ conditioning information is measured by a vector of
conditioning variables. Since the model imposes weak functional form restrictions on the
execution probabilities and picking off risks, we estimate the traders’ expectations using non-
parametric regressions of the realized fill history of each of the orders onto a set of conditioning
variables. Ideally, we would include in the conditioning information the order quantity; the
entire limit order book; and information that predicts the distribution of the common value
innovations, the distribution of private values and the cancellation time. It is neither feasible
nor computationally tractable to do so. Instead, we condition on six variables: order quantity, ask
depth, bid depth, lagged volume, index volatility and the time of day.Table4 contains definitions
of the conditioning variables. LetXt denote the conditioning information. In unreported ordered
probit models, we reject the null that the conditioning variables do not predict the traders’ order
submissions.1

We include the order quantity since the trade-offs between order prices, execution
probabilities and picking off risks are likely to depend on order quantity.Harris and Hasbrouck
(1996) show that on the New York Stock Exchange, an increase order quantity tends to decrease
execution probabilities.

We include the ask and bid depth to capture competition between traders on the same side
of the limit order book. The book quantities reported inTable3 indicate that the depth is volatile
in our sample. We do not condition on the bid–ask spread, since it is relatively constant over the
sample. The time priority rule implies that a new sell limit order at the best ask quote is likely
to have a lower execution probability when the ask depth is large. The depth on the other side of
the book may also influence the order submissions. A larger bid depth implies more competition
among buyers, increasing the probability of buy market order submissions in the future and
therefore increasing the execution probabilities for new sell limit orders.

We include lagged trading volume to measure recent order submission activity. If the arrival
of traders to the market is clustered in time, lagged trading volume, or other measures of lagged
activity, are useful in predicting execution probabilities and picking off risk.Biais et al. (1995)
find empirically that trading activity is clustered in time. As a consequence, lagged trading
volume may have an impact on the execution probabilities and picking off risks.

We include lagged index volatility to measure volatility. InFoucault’s (1999) theoretical
model, the volatility of the asset influences both the execution probabilities and the picking
off risks. Such effects are likely to carry over to many formulations of the order submission
problem. We condition on lagged index volatility to measure volatility for two reasons. First,

1. For buy orders:χ2
6 = 2428·2, with p-value= 0·00 and for sell orders:χ2

6 = 1622·7, with p-value= 0·00.
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TABLE 4

Description of the conditioning variables

Conditioning variable Description

Order quantity The number of shares in the order submitted att .
Transformed by taking the logarithm of the number of shares.

Ask depth The number of shares in the order book at the best ask quote.
Transformed by taking the logarithm of one plus the number of shares
divided by 1000.

Bid depth The number of shares in the order book at the best bid quote.
Transformed by taking the logarithm of one plus the number of shares
divided by 1000.

Lagged volume The cumulative number of shares transacted during the minimum of the
previous 10 minutes and the time since the market opening.
Transformed by taking the logarithm of one plus the number of shares
divided by 1000.

Index volatility The standard deviation of the OMX index returns over the minimum of the
60 minutes and the number of minutes since market opening.
Transformed by taking the logarithm of one plus the volatility times

√
270;

there are 270 trading minutes per day.

Time of day The time since the market opening. Measured in seconds since midnight.
Transformed by dividing by 3600.

The table describes the construction of the conditioning variables. All variables are transformed to
have approximately the same scale.

index volatility measures market-wide volatility and may be less sensitive to volatility induced
by transactions randomly occurring at the best bid or ask quotes than volatility measured by
Ericsson’s transaction price volatility. Second, conditional volatility is autocorrelated.

We include the time of day because market closing may cause a deadline effect. For
example, traders may not wish to have limit orders outstanding overnight because overnight
news may cause discrete price movements and therefore execution probabilities and picking off
risks may vary with the time until the next market close.Biais et al. (1995) find empirically that
order submissions depend on the time until the next market closing.

4.1. Test of strictly positive conditional choice probabilities

Define B̈(Xt ) as the set of indexes for buy order prices that are chosen with strictly positive
probability in our sample conditional onXt , with elements ordered by the distance from the best
ask quotëb1 < b̈2 < · · · < b̈N :

B̈(Xt ) =
{
b | Pr(dbuy

t,b = 1 | Xt ) > 0
}
. (36)

DefineS̈(Xt ) similarly.
An order is in B̈(Xt ) or S̈(Xt ) for all Xt , if it has strictly positive conditional choice

probability for all Xt . Suppose that buy orders atn,n + 1, . . . , N ticks from the best ask quote
and sell orders ato,o + 1, . . . ,O ticks from the best bid quote all have conditional choice
probabilities greater than or equal toL B, whereL B > 0. Letz++

t be a vector of strictly positive
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measurable functions of the vectorXt , and⊗ the Kronecker product. Define

PC = E





dbuy
t,n − L B

·
·
·

dbuy
t,N − L B

dsell
t,o − L B

·
·
·

dsell
t,O − L B


⊗ z++

t


. (37)

The law of iterated expectations and the restriction that the conditional choice probabilities are
greater than or equal toL B imply the null hypothesis

H0 : PC > 0. (38)

We use the sample moment analoguêPCT to form an estimator forPC. Under standard
conditions,

√
T(P̂CT − PC) converges in distribution to a normal random variable, with

asymptotic variance–covariance matrix,APC. Wolak (1989) derives a test statistic for a local
test ofH0,

MPC = min{a|a≥0} T(P̂CT − a)A−1
PC(P̂CT − a)′, (39)

and shows that underH0, MPC converges in distribution to the weighted sum ofχ2 variables,

Pr(MPC ≥ r ) =

∑dim(APC)

k=0
Pr[χ2

k ≥ r ]w(dim(APC),dim(APC)− k,APC), (40)

whereχ2
k is aχ2 variable withk degrees of freedom, dim(APC) is the rank of the asymptotic

variance–covariance matrix, and w(dim(APC),dim(APC)−k,APC), for k = 0, . . . ,dim(APC)

are weights that depend on the asymptotic variance–covariance matrix.Wolak (1989) describes
a Monte Carlo method for calculating the weights.

Table5 reports the results for the tests that the conditional choice probabilities are greater
than or equal to 0·02. The tests are computed for one tick, two tick and three tick buy and sell
limit orders.Table2 reports that in our sample, approximately 48% of the orders submitted are
market orders, and so we do not include market orders in the test.

Each row reports the point estimates of the unconditional differences in decision indicators
and 0·02 multiplied by positive instruments, the associated standard errors andp-values for the
null of positive conditional choice probabilities for different order submissions.2 Each column
corresponds to a different positive instrument. The final row of the table reports theMPC test
described above for each instrument and all submissions, and the final column of the table reports
the test statistic across the instruments. All of the point estimates are strictly positive and none
of the tests reject the null hypothesis of strictly positive conditional choice probabilities; the
p-values are all greater than 0·98.

We find no evidence against the hypothesis that the traders submit one tick, two tick and
three tick limit orders at each value of the conditioning variables. We compute the thresholds for
market orders and limit orders up to three ticks away from the quotes. A censoring bias could
arise in our subsequent tests if some order submission between a market and three tick limit order
were optimal for some trader, but not used in computing the thresholds. Since we use all order

2. The standard errors are computed with 50 lags using theNewey and West(1987) procedure. The empirical
results are robust to changes in the lag length. The asymptoticp-values for the monotonicity tests are computed using
10,000 Monte Carlo simulation trials.
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TABLE 5

Test of strictly positive conditional choice probabilities

Instruments Joint
Order Order Ask Bid Lagged Index Time of MPC

Constant quantity depth depth volume volatility day statistic

Buy limit orders
1 Tick 0·18 1·27 0·35 0·37 0·45 0·12 2·20 0·00

(0·00) (0·03) (0·01) (0·01) (0·01) (0·00) (0·06) (0·00)
1·00 1·00 1·00 1·00 1·00 1·00 1·00 0·99

2 Ticks 0·03 0·20 0·04 0·04 0·07 0·02 0·32 0·00
(0·00) (0·01) (0·00) (0·00) (0·01) (0·00) (0·02) (0·00)
1·00 1·00 1·00 1·00 1·00 1·00 1·00 0·99

3 Ticks 0·02 0·13 0·04 0·04 0·05 0·02 0·26 0·00
(0·00) (0·01) (0·00) (0·00) (0·01) (0·00) (0·03) (0·00)
1·00 1·00 1·00 1·00 1·00 1·00 1·00 0·99

Sell limit orders
1 Tick 0·13 1·00 0·32 0·37 0·33 0·09 1·61 0·00

(0·00) (0·03) (0·01) (0·01) (0·01) (0·00) (0·05) (0·00)
1·00 1·00 1·00 1·00 1·00 1·00 1·00 0·99

2 Ticks 0·02 0·15 0·03 0·04 0·05 0·01 0·21 0·00
(0·00) (0·01) (0·00) (0·00) (0·01) (0·00) (0·02) (0·00)
1·00 1·00 1·00 1·00 1·00 1·00 1·00 0·99

3 Ticks 0·01 0·04 0·02 0·02 0·02 0·01 0·08 0·00
(0·00) (0·01) (0·00) (0·00) (0·00) (0·00) (0·02) (0·00)
1·00 1·00 1·00 1·00 1·00 1·00 1·00 0·99

Joint MPC statistic
All limit orders 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00

0·98 0·99 0·98 0·98 0·98 0·99 0·98 1·00

The top two panels of the table report the averages of the differences of the order choices and 0·02, multiplied
by positive instruments. Asymptotic standard errors in parentheses andp-values are reported below each point
estimate. The rightmost column and the bottom panel of the table report jointMPC test statistics across the
instruments, the order prices, and across instruments and order prices, withp-values reported below each test
statistic. We ensure that all instruments are strictly positive by replacing them with 0·00001 if they are zero.

submissions between a market order and a three tick limit order, our tests do not face such a
censoring bias.

4.2. Test of monotonicity of the execution probabilities

If execution probabilities are monotone in the distance from the best quotes, then ranking the
order prices by the distance from the best quotes is equivalent to ranking them by their execution
probabilities. The assumption is a weak one in a deep market—a deep market imposes enough
competitive pressure on traders such that they cannot increase execution probabilities by placing
less aggressive orders.

The execution probabilities are computed as a non-parametric regression of realized fills on
information known at the time of order submission. LetK be a multidimensional kernel function
andhT a bandwidth associated with each argument. The non-parametric estimate ofψsell(s̈, Xt )

is

ψ̂sell(s̈, Xt ) ≡

∑T
t ′ 6=t

(
dsell

t ′,s̈

∑ϒ
τ=0

d Qt ′,t ′+τ
qt ′

)
K(h−1

T (Xt ′ − Xt ))∑T
t ′ 6=t K(h

−1
T (Xt ′ − Xt ))

, (41)

for s̈ ∈ S̈(Xt ), with a similar definition on the buy side. From the definition ofS̈(Xt ), ψ̂sell(s̈, Xt )

is well defined. Since the lifetime of most limit orders is less than 2 days in our sample, we set
the maximum lifetime of the order,ϒ in equation (41), equal to 2 days.
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To test monotonicity of the execution probabilities, define

DF ≡ E


I (Xt ∈ X̄)



ψbuy(b̈1, Xt )− ψbuy(b̈2, Xt )

ψbuy(b̈2, Xt )− ψbuy(b̈3, Xt )

·
·
·

ψsell(s̈1, Xt )− ψbuy(s̈2, Xt )

ψsell(s̈2, Xt )− ψsell(s̈3, Xt )

·
·
·


⊗ z++

t


, (42)

where I (Xt ∈ X̄) is a trimming indicator for the set̄X in the interior of the support of
Xt . The trimming indicator is used to simplify the asymptotic distribution. Applying the
law of iterated expectations, monotonicity of the execution probabilities implies the null
hypothesis

H1 : DF > 0. (43)

We use the sample moment analogue ofDF to form the estimator̂DFT , using the non-
parametric estimators of the execution probabilities. In AppendixC, we provide regularity
conditions under which

√
T(D̂FT − DF) converges in distribution to a normal random variable,

and we provide the asymptotic variance–covariance matrix,ADF . We form a similar test statistic
to MPC in equation (39) above as a test ofH1.

Table6 reports the results of the monotonicity tests of the execution probabilities. The tests
are computed using the execution probabilities for market and one tick limit orders; one and two
tick limit orders; and two and three tick limit orders, for both buy and sell orders.

Each row reports the point estimates of the unconditional differences in execution
probabilities multiplied by positive instruments, standard errors andp-values for the null of
monotonicity of the execution probabilities for different order submissions.3 Each column
corresponds to a different positive instrument. The final row of the table reports theMDF test
described above for each instrument and all submissions, and the final column of the table reports
the test statistic across each order submission. All of the point estimates are strictly positive and
none of the tests reject the null hypothesis of monotonicity of the execution probabilities; the
p-values are all greater than 0·98.

Together, the test statistics reported inTables5 and6 fail to reject that buy and sell market
orders, one tick, two tick and three tick limit orders are chosen for each value of the conditioning
information, and that ordering the orders by the distance from the quotes is the same as ordering
them by their execution probabilities. We use the associated threshold valuations to form a
monotonicity test.

4.3. Computing the threshold valuations

To compute the threshold valuations, we need estimates of the picking off risks. To form
estimates of the picking off risks, we need estimates of changes in the common value. A common
proxy for the common value in many microstructure applications is the mid-quote, equal to the
average of the best bid and ask quote. Such a proxy is inappropriate in our application for two
reasons. First, a trader influences the current mid-quote by his order submission at timet . Second,

3. The standard errors are computed with 50 lags using the method described in AppendixC to capture the
overlap in the errors in the execution probabilities between orders submitted at different times. The empirical results are
robust to changes in the lag length. The asymptoticp-values for the monotonicity tests are computed using 10,000 Monte
Carlo simulation trials.
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TABLE 6

Monotonicity tests for the execution probabilities

Instruments Joint
Order Order Ask Bid Lagged Index Time of MPC

Constant quantity depth depth volume volatility day statistic

Buy limit orders
Market 0·31 2·13 0·68 0·76 0·75 0·20 3·70 0·00
−1 Tick limit (0·02) (0·11) (0·04) (0·04) (0·04) (0·01) (0·19)

1·00 1·00 1·00 1·00 1·00 1·00 1·00 0·99
1 Tick limit 0·33 2·29 0·72 0·79 0·82 0·21 3·99 0·00
−2 Tick limit (0·02) (0·16) (0·06) (0·05) (0·06) (0·02) (0·28)

1·00 1·00 1·00 1·00 1·00 1·00 1·00 0·99
2 Tick limit 0·20 1·35 0·42 0·47 0·49 0·13 2·36 0·00
−3 Tick limit (0·02) (0·16) (0·05) (0·05) (0·06) (0·02) (0·29)

1·00 1·00 1·00 1·00 1·00 1·00 1·00 0·99

Sell limit orders
Market 0·35 2·44 0·77 0·85 0·86 0·22 4·23 0·00
−1 Tick limit (0·02) (0·13) (0·05) (0·05) (0·05) (0·02) (0·20)

1·00 1·00 1·00 1·00 1·00 1·00 1·00 0·99
1 Tick limit 0·35 2·37 0·77 0·85 0·85 0·22 4·17 0·00
−2 Tick limit (0·02) (0·18) (0·06) (0·06) (0·07) (0·02) (0·28)

1·00 1·00 1·00 1·00 1·00 1·00 1·00 0·99
2 Tick limit 0·13 0·92 0·28 0·32 0·33 0·09 1·60 0·00
−3 Tick limit (0·03) (0·19) (0·06) (0·06) (0·08) (0·02) (0·29)

1·00 1·00 1·00 1·00 1·00 1·00 1·00 0·99

Joint MPC statistic
All limit orders 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00

0·98 0·99 0·99 0·98 0·98 0·98 0·99 1·00

The top two panels of the table report the average differences of the execution probability for different order
prices multiplied by positive instruments. The asymptotic standard errors in parentheses andp-values are
reported below the point estimates. The rightmost column and the bottom panel of the table report jointMDF
test statistics across the instruments, the order prices, and across instruments and order prices, withp-values
reported below each test statistic. We ensure that all instruments are strictly positive by replacing them with
0·00001 if they are zero.

a limit order is executed once it becomes the best bid or ask quote, inducing a mechanical
correlation between the mid-quote and the execution. Our common value is not based on the
mid-quote but instead is based on the level of the market index.

From equation (3), the common value is integrated of order one, orI (1). We assume that
there is anI (1) vector of factors,ft , such that

yt = β ft , (44)

with β a parameter.
The best bid quote is observed when there are buy limit orders outstanding in the order

book. Accordingly, denote byt ′ a time period where there are outstanding buy limit orders in the
book. We provide conditions in AppendixB for the best bid quote to be cointegrated with the
common value,

psell
t ′,0 = yt ′ + εt ′

= β ft ′ + εt ′ , (45)

wherepsell
t ′,0 is the best bid quote at timet ′ andεt ′ is I (0). Let β̂T ′ denote the least squares estimate

of β obtained by regressingpsell
t ′,0 on ft ′ . We form an estimate of changes in the the common value

as

ŷt+τ − ŷt = β̂T ′( ft+τ − ft ). (46)
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TABLE 7

Common value estimation

Cointegrating regression
Unit root test Coefficient Cointegration test

OMX index −0·89
p-value= 0·79

Bid quote −1·11 0·37 −3·67
p-value= 0·71 (0·00) p-value< 0·03

Ask quote −1·08 0·36 −3·62
p-value= 0·72 (0·00) p-value< 0·03

The first column reports unit root tests for the best bid quote, best
ask quote and the OMX index. All series are demeaned. There are
20,760 observations. The unit root test is an augmented Dickey–
Fuller t-test with 10 lags, andp-values are reported below eacht-
statistic. The second column reports the estimated coefficient on the
demeaned OMX index using both quote series with the standard error
in parentheses. The final column reports an augmented Engle–Granger
test for cointegration computed using 10 lags.

We used minute-by-minute observations of the value of the OMX index as our factor series.
The OMX index is a value-weighted index of the 30 most traded companies on the Stockholm
Stock Exchange.Bossaerts(1988) provides conditions for such cointegration to hold in standard
asset pricing models such as the Capital Asset Pricing Model. We also experimented with
including the daily sampled $/SKr exchange rate and daily sampled Swedish interest rates as
factors. The exchange rate and interest rates added little explanatory power and we therefore
only report the results obtained using the market index.

The first column ofTable7 reports a Dickey–Fuller test statistic for the null hypothesis of a
unit root in the OMX index, the bid quote and the ask quote; the test fails to reject the null. The
final two columns ofTable7 report our estimate of̂βT ′ and an Engle–Granger cointegration test.
We reject the null hypotheses that the bid and the ask are not cointegrated with the OMX index.

Our estimator forξsell(s̈, Xt ) is

ξ̂sell(s̈, Xt ) =

∑T

t ′ 6=t

(
dsell

t ′,s̈

∑ϒ

τ=0

d Qt ′,t ′+τ

qt ′
(ŷt ′+τ − ŷt ′)

)
K(h−1

T (Xt ′ − Xt ))∑T

t ′ 6=t
K(h−1

T (Xt ′ − Xt ))

, (47)

wherêyt+τ − ŷt is the estimate of changes in the common value in (46), ands̈ ∈ S̈(Xt ). We form
a similar estimator for buy order picking off risks.

We estimate the threshold valuations by

θ̂sell(s̈, s̈′, Xt ) = psell
t,s̈ −

(psell
t,s̈′ − psell

t,s̈ )ψ̂
sell(s̈′, Xt )+ (̂ξsell(s̈, Xt )− ξ̂sell(s̈′, Xt ))

ψ̂sell(s̈, Xt )− ψ̂sell(s̈′, Xt )
, (48)

with a similar estimator for the buy side. Ifψsell(s̈, Xt )− ψsell(s̈′, Xt ) > 0, thenθsell(s̈, s̈′, Xt )

is a continuous function of the execution probabilities and picking off risks. Consistency of the
estimators for the execution probabilities and picking off risks therefore implies consistency of
the estimator̂θsell(s̈, s̈′, Xt ) for the thresholds.
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4.4. Test of monotonicity of the threshold valuations

We use our estimators for the threshold valuations, equation (48), to form a test statistic for the
monotonicity restrictions in equation (23) of Lemma2. If

{0,1,2,3} ⊂ S∗(Xt ), and {0,1,2,3} ⊂ B∗(Xt ), (49)

Lemma2 implies

θbuy(0,1, Xt ) > θbuy(1,2, Xt ) > θbuy(2,3, Xt ), (50)

θsell(2,3, Xt ) > θsell(1,2, Xt ) > θsell(0,1, Xt ), (51)

and

θbuy(2,3, Xt ) > θsell(2,3, Xt ). (52)

Define

Dθ ≡ E

I (Xt ∈ X̄)


θbuy(0,1, Xt )− θbuy(1,2, Xt )

θbuy(1,2, Xt )− θbuy(2,3, Xt )

θsell(1,2, Xt )− θsell(0,1, Xt )

θsell(2,3, Xt )− θsell(1,2, Xt )

θbuy(2,3, Xt )− θsell(2,3, Xt )

 ⊗ z++
t

 . (53)

Inequalities (50) through (52) and the law of iterated expectations imply the null hypothesis,

H2 : Dθ > 0. (54)

We use the sample moment analogue ofDθ to form the estimator̂DθT , using the non-
parametric estimators for the threshold valuations. In AppendixC, we provide conditions under
which

√
T(D̂θT − Dθ) converges in distribution to a normal random variable and provide the

asymptotic variance–covariance matrix. We form a similar test statistic toMPC in equation (39)
above as a test ofH2.

Table 8 reports estimates of the average threshold valuation differences. The top panel
reports the average of the differences for buy orders multiplied by positive instruments; reported
below each estimate are associated asymptotic standard errors andp-values for the null that the
differences are positive.4 Each column uses a different positive instrument. The final column
reports theMDθ statistic for each difference for all the instruments jointly, with asymptotic
p-values reported in parentheses. The second panel reports estimates of the differences for sell
orders. The point estimates of the threshold valuation differences are positive for all buy and sell
order thresholds and the tests do not reject the null hypothesis of monotonicity, either individually
for each pair of threshold valuations and instrument, or jointly across all instruments.

The third panel reports estimates of the differences between the threshold valuation for a
two tick and a three tick buy limit order and the threshold valuation for a two and a three tick sell
limit order. The point estimates are negative for all instruments. The associated tests all reject the
null hypothesis of monotonicity at the 5% level. The joint test across all instruments reported in
the last column rejects the null hypothesis at the 1% level.

The bottom panel ofTable 8 reports the joint tests for the buy threshold valuation
differences, the sell threshold valuation differences and the buy and sell threshold valuations
together with asymptoticp-values reported below the point estimates. For all instruments, we
fail to reject the null hypothesis of monotonicity for the buy and the sell thresholds separately.

4. The standard errors are computed as described in AppendixC using theNewey and West(1987) procedure
with 50 lags, and the asymptoticp-value for theMDθ statistic is computed using the simulation method given inWolak
(1989) with 10,000 Monte Carlo simulation trials. The results are robust to changes in the lag length.
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TABLE 8

Monotonicity tests for the threshold valuations

Threshold Instruments Joint
valuation Order Ask Bid Lagged Index Time of MPC
difference Constant quantity depth depth volume volatility day statistic

Buy threshold valuations
θbuy(0,1, Xt ) 2·15 14·82 4·66 5·11 5·38 1·42 25·76 0·00
−θbuy(1,2, Xt ) (0·15) (1·03) (0·37) (0·40) (0·40) (0·12) (1·84)

1·00 1·00 1·00 1·00 1·00 1·00 1·00 0·99
θbuy(1,2, Xt ) 1·21 8·34 2·73 3·02 2·93 0·78 14·58 0·00
−θbuy(2,3, Xt ) (0·14) (0·93) (0·33) (0·35) (0·38) (0·12) (1·68)

1·00 1·00 1·00 1·00 1·00 1·00 1·00 0·99

Sell threshold valuations
θsell(1,2, Xt ) 2·02 13·89 4·58 5·06 5·02 1·32 24·28 0·00
−θsell(0,1, Xt ) (0·16) (1·20) (0·38) (0·44) (0·44) (0·14) (1·83)

1·00 1·00 1·00 1·00 1·00 1·00 1·00 0·99
θsell(2,3, Xt ) 0·24 1·61 0·47 0·54 0·57 0·16 2·82 0·00
−θsell(1,2, Xt ) (0·49) (3·61) (1·14) (1·29) (1·44) (0·41) (5·48)

0·69 0·67 0·66 0·66 0·65 0·65 0·70 0·99

Buy and sell threshold valuations
θbuy(2,3, Xt ) −1·43 −9·84 −3·26 −3·62 −3·47 −0·92 −17·27 13·16
−θsell(2,3, Xt ) (0·42) (3·01) (1·00) (1·11) (1·25) (0·38) (4·77)

0·00 0·00 0·00 0·00 0·00 0·01 0·00 0·01

Joint MDθ statistic
Buy thresholds 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00

0·75 0·76 0·74 0·75 0·75 0·76 0·75 1·00
Sell thresholds 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00

0·75 0·75 0·75 0·75 0·75 0·75 0·75 1·00
Buy and sell 70·35 76·33 80·97 76·43 50·46 32·90 79·49 99·31
thresholds 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00

The top three panels of the table report the average differences of threshold valuations for different order prices
multiplied by positive instruments. Asymptotic standard errors in parentheses and thep-values are reported below
the point estimates. The rightmost column and the bottom panel of the table report jointMDθ test statistics across the
instruments, the order prices, and across instruments and order prices, withp-values reported below each test statistic.
We ensure that all instruments are strictly positive by replacing them with 0·00001 if they are zero.

The final two rows of the table test the monotonicity of all thresholds jointly, and the tests all
reject the null hypothesis at the 1% level.

Figure5 plots the estimated pay-offs for buy and sell market, one, two and three tick limit
orders, evaluated at the observation in the sample where the conditioning variables are closest
to their sample averages. At this observation, the best bid quote is 116 SKr and the best ask
quote is 117 SKr:psell

t,0 = 116 SKr andpbuy
t,0 = 117 SKr. The estimated pay-offs for traders

with valuations equal to the threshold valuations are computed by substituting estimates of the
threshold valuations, the execution probabilities and picking off risks, and the order quantity into
equation (11), and dividing by the order quantity. The order submission cost per share,c, is set
to zero.

The estimated pay-offs for traders with valuations between the threshold valuations lie on
the linear segment between the estimated pay-offs at the threshold valuations. The top plot is
the expected pay-offs for buy orders and the bottom plot is the expected pay-offs for sell orders.
The horizontal axis is the trader’s valuation and the vertical axis is the expected pay-off. The
thick solid line is the maximum obtainable pay-offs, if the traders were constrained to submit
buy orders or sell orders only.
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FIGURE 5

Estimated pay-offs.
The figure plots the estimated pay-offs as a function of the trader’s valuation. The estimated pay-offs are evaluated at the
sample observation with conditioning variables closest to their sample averages. The horizontal axis gives the trader’s

valuation and the vertical axis the pay-offs for alternative order submissions

The threshold valuations satisfy the monotonicity restriction for buy order submissions
and sell order submissions separately. The threshold valuations do not satisfy the monotonicity
restrictions for buy order submissions and sell order submissions jointly. Suppose that traders
were restricted to submit buy orders only. The optimal buy order for a trader with a valuation of
115 would be to submit a three tick buy limit order. But if such a trader were allowed to submit a
sell order, he would obtain a higher expected pay-off from submitting a one tick sell limit order.
Suppose that traders were restricted to submit sell orders only. The optimal sell order for a trader
with valuation of 118 would be to submit a three tick sell limit order. But if such a trader were
allowed to submit a buy order, he would obtain a higher expected pay-off from submitting a one
tick buy limit order. The situations illustrated inFigure5 are common enough in our sample for
the model to be rejected for buy and sell order submissions jointly.

Suppose the trader selected the orders with the highest pay-offs based onFigure5. Traders
would submit one and two tick limit orders as well as market orders. The pay-offs for two
tick buy and sell limit orders intersect somewhere between 116 and 117. As a consequence, all
types of traders would earn positive expected pay-offs from some order submission, ignoring any
order submission costs. The positive expected pay-offs are inconsistent with the predictions in
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TABLE 9

Average estimated pay-offs for different order submissions

Order Execution Picking off Estimated pay-off at
probability risk threshold valuation

Buy orders
1 Tick limit 0·68 0·01 1·94

(0·01) (0·03) (0·13)
2 Tick limit 0·33 −0·09 0·39

(0·02) (0·05) (0·06)
3 Tick limit 0·12 −0·15 −0·02

(0·02) (0·10) (0·05)

Sell orders
1 Tick limit 0·63 0·01 1·54

(0·01) (0·02) (0·10)
2 Tick limit 0·27 0·14 0·19

(0·02) (0·07) (0·09)
3 Tick limit 0·13 0·11 0·12

(0·02) (0·08) (0·16)

The table reports unconditional averages of the execution
probabilities, the picking off risks, and estimated pay-offs for
traders with valuations equal to threshold valuations for the market
and one tick, one tick and two tick, and two tick and three tick buy
and sell orders. The estimated pay-offs for traders with valuations
equal to the threshold valuations are computed by substituting
estimates of the threshold valuations, the execution probabilities,
and the picking off risks, and the order quantity into equation (11),
and dividing by the order quantity. The order entry cost ofc per
share is set equal to zero. Asymptotic standard errors are reported
in parentheses, and are computed using 50 lags.

Glosten (1994), where an equilibrium condition is that expected pay-offs are zero from
submitting limit orders for traders with zero private values. Our institutional setting with discrete
prices and time priority is closer to the model inSeppi(1997), where the average limit order
earns a positive expected profit, and the marginal limit order earns zero profits. ButSand̊as
(2001), also using Swedish data, rejects the zero-expected profit condition when applied only
to marginal limit orders. Our results are consistent with the results inSand̊as(2001).

The first column ofTable9 reports the sample averages of the execution probabilities for
one, two and three tick buy and sell limit orders. The average execution probabilities show the
trade-off between limit order price and execution probability. The second column ofTable 9
reports the average of the estimated picking off risks. On average, buy orders away from the best
bid quote and sell orders away from the best ask quote face a larger picking off risk than orders
closer to the quotes. The exception is the three tick sell limit order, which has smaller picking off
risk than the picking off risk for the two tick sell limit order.

The third column ofTable 9 reports the average estimated pay-offs for traders with
valuations equal to the threshold valuations. The order submission cost per share is set equal to
zero. The estimated pay-offs are increasing the closer the order submission is to the quotes. There
are two reasons for the estimated pay-offs to change across order submissions. First, the price,
the execution probabilities, and the picking off risks change. Second, the estimated valuations of
the trader submitting the order change. The monotonicity of the estimated pay-offs is consistent
with the monotonicity of the indirect utility function in Lemma4. The average estimated pay-
offs for three tick buy limit orders are negative, although not statistically different from zero.
The expected pay-offs are computed using a zero order submission cost; if there is a large order
enough submission cost, three tick buy limit orders would lead to negative expected pay-offs.
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5. INTERPRETING THE EVIDENCE

In our model a trader’s private value measures his desire to transact. Traders with extreme private
values have a strong desire to transact; they typically submit one tick limit orders or market
orders. Their pay-offs are relatively insensitive to how we model monitoring costs, the possibility
of multiple order submissions and resubmission strategies, since their order submissions have
high execution probabilities. Such traders follow strategies similar to the pre-committed traders in
Harris and Hasbrouck(1996), and their order submissions are insensitive to small changes in the
execution probabilities and picking off risks. The trade-offs can rationalize the order submissions
of pre-committed traders.

Traders with moderate private values are almost indifferent to trading; they typically
submit two or three tick limit orders, switching between buy and sell orders. Their pay-offs are
sensitive to how we model monitoring costs, the possibility of multiple order submissions and
resubmission strategies, since their order submissions have low execution probabilities. Such
traders follow strategies similar to the passive traders inHarris and Hasbrouck(1996), and their
order submissions are sensitive to small changes in the execution probabilities and picking off
risks. The trade-offs cannot rationalize the order submissions of passive traders.

We reject the model because the thresholds for the two vs. three tick buy limit order is
lower than the thresholds for the two vs. three tick sell limit order. Suppose that short sales are
not allowed—only owners of shares can submit sell orders. If short sales are not allowed, a trader
with a low valuation who holds shares may submit a limit sell order, while a trader with the same
valuation who does not hold shares may submit a buy order. We would then observe sell limit
order and buy limit order submissions by traders with identical valuations, and the expected pay-
off from the sell limit order submissions would be greater than the expected pay-off from the buy
limit order submissions for such valuations. But in our sample, we also observe circumstances
where traders place limit sell orders although the expected pay-offs from submitting limit buy
orders are higher.

We reject the monotonicity restriction for the buy and sell thresholds jointly because the
expected pay-offs for limit orders with low execution probabilities are too low relative to the
expected pay-offs for limit orders with high execution probabilities. Modifications of the model
that increase the expected pay-offs for limit orders with low execution probabilities, decrease the
expected pay-offs for limit orders with high execution probabilities or a combination of the two
could explain the rejection. Common fixed or variable costs of submitting orders do not change
the relative expected pay-offs, and so such costs cannot explain the rejection.

The picking off risk is the covariance between changes in the common value and the order
quantity that transacts. Our estimates of the common value are based on the market index. The
rejection could be explained by poor estimates of the picking off risk if the estimates of the
picking off risk are overestimated for limit orders with low execution probabilities relative to
those for limit orders with high execution probabilities. It is possible that our estimates of the
picking off risk are biased if changes in the common value are not immediately reflected by
changes in the market index. On average, limit orders with low execution probabilities take longer
to fill than limit orders with high execution probabilities. Perhaps the estimated changes in the
common value are underestimated at shorter horizons relative to the estimated changes at longer
horizons. Such a pattern could explain our rejection of the monotonicity restrictions for buy and
sell thresholds jointly.

Our model does not allow for monitoring costs. In reality, traders may monitor outstanding
limit orders to reduce the picking off risk they face. Monitoring costs may increase with the
time that the order spends in the book. A two tick limit order has a shorter expected time to
execution than a three tick limit order; such monitoring costs would lower the pay-off of three
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tick order relative to the pay-off of a two tick order. Such monitoring costs could not explain the
rejection.

Alternatively, monitoring costs may increase with the picking off risk. A two tick sell limit
order has higher picking off risk than a three tick sell limit order; such monitoring costs would
lower the pay-off of a two tick sell limit order relative to the pay-off of a three tick sell limit
order. Such monitoring costs could explain the rejection.

A trader’s order quantity is exogenous rather than a choice variable in our model; we use
quantity as a conditioning variable in our tests. Our assumption that traders choose the order price
but not the quantity follows much of the theoretical literature, for example,Glosten and Milgrom
(1985). According toTable 8 the model is rejected without using quantity as an instrument,
suggesting that endogenous quantity is not the main reason that the model is rejected.

We compute expected pay-offs assuming that traders evaluate each order submission
opportunity independently of any other order submission opportunities they may have.
The monotonicity restrictions that we test do not fully characterize optimal order submissions
when traders do not evaluate each order submission independently. For example, the trader may
make multiple order submissions. The trader may also resubmit an order if the initial order fails to
execute. The opportunity to resubmit an order is valuable only when the initial order submission
is cancelled. The value of the option to resubmit would increase the pay-offs of orders with lower
execution probabilities relative to the pay-offs of orders with higher execution probabilities. As
a consequence, the possibility of resubmissions could explain the rejection.

The model can rationalize the order submissions of traders with extreme private values,
but cannot rationalize the order submissions of traders with moderate private values. The
model is rejected because the expected pay-offs from order submissions with low execution
probabilities are too low relative to the expected pay-offs from limit order submissions with high
execution probabilities. The rejection cannot be explained by common order submission costs or
monitoring costs that increase in the time the limit order remains in the book. The rejection may
be explained by our omission of monitoring costs that increase in the magnitude of the picking
off risk or potential pay-offs from order resubmissions.

6. CONCLUSIONS

Most theoretical models of order submissions are based on the trade-offs between order prices,
execution probabilities and picking off risks. We develop empirical restrictions of a model based
on the trade-offs and compute a semiparametric test of the restrictions using a sample from
the Stockholm Stock Exchange. We do not reject the restrictions for buy orders or sell orders
separately and reject the restrictions for buy and sell orders jointly. The expected pay-offs from
submitting limit orders away from the quotes are too low relative to the expected pay-offs from
submitting orders close to the quotes to rationalize the trader’s actual order submissions in our
sample. The model can rationalize the order submissions of traders with extreme private values,
but cannot rationalize the order submissions of traders with moderate private values.

Existing empirical studies of order submission focus on how various explanatory variables
such as depth, trading activity, or time affect the traders’ order submissions. But in theoretical
models of order submissions, such variables enter only indirectly as determinants of the
economic trade-offs between order prices, execution probabilities and picking off risks. We
explicitly model the link between the economic trade-offs and the order submissions. Our model
can be used to develop an ordered discrete choice model for order submissions based directly on
the theory. Such a model can be used to make inferences about the private value distribution
along the lines of the analysis of auctions inElyakime, Laffont, Loisel and Vuong(1994).
Estimates of the private value distribution are useful for understanding trading activity and for
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evaluating alternative trading rules.Hollifield, Miller, Sand̊as and Slive(2003) estimate such a
model, accounting for the censoring that may occur when some traders find it optimal not to
make any order submission.

We consider a one-shot order submission problem, with exogenous order quantity.
Extending our model and empirical approach to allow for monitoring of limit orders; endogenous
order quantity; multiple order submissions; and cancellations and resubmissions are all useful
directions for future work.

APPENDIX A. PROOFS

Proof of Lemma1. Assume thatu′ > u. Givend
buy∗
t (b,u,q) = 1,

qψ
buy
t (b,q)(yt + u − p

buy
t,b )+ qξ

buy
t (b,q)− qc ≥ qψ

buy
t (b′,q)(yt + u − p

buy
t,b′ )+ qξ

buy
t (b′,q)− qc, (A.1)

andd
buy∗
t (b′,u′,q) = 1,

qψ
buy
t (b′,q)(yt + u′

− p
buy
t,b′ )+ qξ

buy
t (b′,q)− qc ≥ qψ

buy
t (b,q)(yt + u′

− p
buy
t,b )+ qξ

buy
t (b,q)− qc. (A.2)

Adding inequality (A.2) to inequality (A.1), dividing byq, and rearranging

(ψ
buy
t (b,q)− ψ

buy
t (b′,q))(u − u′) ≥ 0. (A.3)

Sinceu′ > u, equation (A.3) implies thatψbuy
t (b′,q) > ψ

buy
t (b,q). If the execution probability is monotone in distance

from the best ask quote, then equation (A.3) implies thatb′
≤ b. The proof for the sell side is symmetric. ‖

Proof of Lemma2. If it is optimal for a trader with private valueu to submit a buy order, then it is also optimal
for traders with private valuesu′ > u to submit buy orders. Lets be an arbitrary sell order, and suppose that

d
buy∗
t (b,u,q) = 1. After dividing byq,

ψ
buy
t (b,q)(yt + u′

− p
buy
t,b )+ ξ

buy
t (b,q)− c > ψ

buy
t (b,q)(yt + u − p

buy
t,b )+ ξ

buy
t (b,q)− c

≥ ψsell
t (s,q)(psell

t,s − yt − u)− ξsell
t (s,q)− c

≥ ψsell
t (s,q)(psell

t,s − yt − u′)− ξsell
t (s,q)− c. (A.4)

The first line follows becauseu′ > u; the second line follows because it is optimal for a trader with private valueu to
submit a buy order atb; the third line follows becauseu′ > u. Symmetric arguments hold for sellers. Thus, there exists

u
buy
t ≥ usell

t such that all traders with private valuesu > u
buy
t optimally submit buy orders, and all traders with private

valuesu < usell
t optimally submit sell orders. Monotonicity of the associated thresholds follows from Lemma1. ‖

Proof of Lemma3. The result follows from Lemmas1 and2. ‖

Proof of Lemma4. 1. Vt (ut ,q) ≥ 0, since the trader can always submit no order and earn a zero pay-off. To
show convexity, consider two private values,u andu′. Let 0 < λ < 1 and letuλ = λu + (1 − λ)u′. Suppose

d
buy∗
t (b,uλ,q) = 1,

Vt (yt + u,q) ≥ qψ
buy
t (b,q)(yt + u − p

buy
t,b )+ qξ

buy
t (b,q)− qc, (A.5)

and

Vt (yt + u′,q) ≥ qψ
buy
t (b,q)(yt + u′

− p
buy
t,b )+ qξ

buy
t (b,q)− qc. (A.6)

Taking the convex combination of inequalities (A.5) and (A.6) and using the definition ofuλ,

λVt (yt + u,q)+ (1 − λ)Vt (yt + u′,q) ≥ qψ
buy
t (b,q)(yt + uλ − p

buy
t,b )+ qξ

buy
t (b,q)− qc

= Vt (yt + uλ,q). (A.7)

The proof is similar if it is optimal for the trader with private valueuλ to submit a sell order or to submit no order.
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2. Let d
buy∗
t (b,u,q) = 1 andu′ > u.

Vt (yt + u′,q) ≥ qψ
buy
t (b,q)(yt + u′

− p
buy
t,b )+ qξ

buy
t (b,q)− qc

> qψ
buy
t (b,q)(yt + u − p

buy
t,b )+ qξ

buy
t (b,q)− qc

= Vt (yt + u,q). (A.8)

The first line follows from the definition ofVt (yt +u′,q); the second line follows sinceu′ > u; and the third line

follows sinced
buy∗
t (b,u,q) = 1.

3. The proof for sellers is symmetric to that in part 2 above.‖

APPENDIX B. COINTEGRATION RESULTS

We assume that there is a strictly positive tick size; feasible order prices are elements of a countable set. Order the set of
feasible prices from lowest to highest, so thatPi < Pi +1. Let Qi j ,t be the order quantity outstanding at thei -th price at
time t , submitted at timet − j , with Qi j ,t > 0 denoting buy quantities,Qi j ,t < 0 denoting sell quantities, andQi j ,t = 0
denoting that no order quantity is outstanding.

The rules of the trading mechanism imply that there cannot be both buy and sell orders outstanding at the same
price at the same time.

Let the common value at timet equalyt . Define the feasible relative prices at timet as the elements of the set of
feasible prices minusyt . The relative order book att is

Ht = (Pi − yt , Qi j ,t ) for i = 1,2,3, . . . ,∞, and j = 1,2,3, . . . ,∞. (B.1)

We make the following assumptions.

CI1 The maximum life of each limit order is some finite integerϒ < ∞.
CI2 Suppose a limit order is submitted to the limit order book at timet . The conditional probability that the order is

cancelled at timet + τ for τ < ϒ depends on a finite-dimensional vector of variables,Rt+τ . The conditional
probabilities are uniformly bounded below by a strictly positive constant.

CI3 The process(Rt , δt ) is a Markov process and satisfies Condition M ofStokey, Lucas and Prescott(1989, p. 348).
CI4 The conditional distribution ofδt ,ut ,qt only depends onRt , andδt ,ut ,qt are conditionally independent.
CI5 The random variablesδt ,ut ,qt each have uniformly bounded support.
CI6 A trader att only conditions his order submissions on the order book relative to the common value,Ht , andRt .
CI7 The cost per share of entering orders,c, is strictly positive.

Lemma B1. Under assumptions CI1–CI7, Ht is characterized by a finite number of elements, each of which is a
bounded random variable.

Proof of LemmaB1. We show that at most a finite number of relative prices have order quantities at any time. Let

[u,u] be the support for the private value and let[δ, δ] be the support for common value innovations. Letp
buy
t be the

price of a buy order submission at timet , andpsell
t the price of a sell order submission att .

A buyer never submits an order that leads to a negative surplus with probability one, and the highest possible
valuation that a buyer could have is his valuation at the time the order fills, which is bounded by assumption. Therefore,

p
buy
t ≤ yt+ϒ + u

≤ yt + ϒδ + u. (B.2)

Similarly for sellers,

psell
t ≥ yt + ϒδ + u. (B.3)

With a positive cost per share for order entry, no buyer would ever submit an order that has a zero execution
probability. Since a limit buy order only transacts with a future sell order and the longest that a limit order lasts isϒ , for
a buy order to have a positive probability of being filled, it must satisfy

p
buy
t ≥ yt+ϒ + ϒδ + u

≥ yt + ϒδ + ϒδ + u

= yt + 2ϒδ + u. (B.4)
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Combining inequalities (B.2) and (B.4),

yt + 2ϒδ + u ≤ p
buy
t ≤ yt + ϒδ + u, (B.5)

or

2ϒδ + u ≤ p
buy
t − yt ≤ ϒδ + u. (B.6)

A similar result holds for sell orders. The relative prices in the relative order book are all bounded at the time of entry:

2ϒδ + u ≤ pt − yt ≤ ϒ2δ + u, (B.7)

with pt the order price submitted att .
Since orders last for up toϒ periods, there can be at mostϒ orders outstanding at any time, and so the relative

prices of all orders in the relative order book are bounded. By assumption, order quantity is bounded.‖

From LemmaB1, there are a finite number of orders outstanding at any time with bounded relative prices. Let that
finite number beM. The relative order book can be represented by

Ht = (Pi,t − yt , Qi j ,t ) for i = 1,2, . . . ,M, and j = 1,2,3, . . . , ϒ, (B.8)

with Pi,t < Pi +1,t and|Pi,t − yt | strictly bounded by a finite constant fori = 1,2, . . . ,M.

Lemma B2. Under assumptions CI1–CI7,(Ht , Rt , δt ) is a stationary Markov process, with a unique ergodic set.

Proof of LemmaB2. By assumption, new order submissions depend upon the relative order book,Ht , the state
vectorRt , and the trader’s private value. The conditional distribution ofHt+1 depends uponHt , new order submissions,
cancellations and innovations in the common value. By assumption,(Rt , δt ) is Markov, and the distribution ofqt depends
only on Rt . Therefore, the process(Ht , Rt , δt ) is also Markov.

The hazard rates for cancellation are bounded below by a strictly positive number; there is a strictly positive
probability that all orders will cancel from any state, leaving all the quantities in the book zero. The conditional
distribution of relative prices dependsδt . By assumption,(Rt , δt ) satisfies Condition M. Therefore,(Ht , Rt , δt ) also
satisfies Condition M. Theorem 11.12 ofStokeyet al. (1989) then applies and so(Ht , Rt , δt ) is a stationary process with
unique ergodic set. ‖

Define the random variable

ε̇t =

{
maxi =1,...,M

{
Pi,t − yt

∣∣ ∑
j Qi j ,t > 0

}
if someQi j ,t > 0,

0 else.
(B.9)

The random variablėεt is the difference between the best bid quote and the common value, if there are buy orders in the
relative book, or zero if there are no buy orders in the book.

Lemma B3. Under assumptions CI1–CI7,ε̇t is stationary.

Proof of LemmaB3. The random variablėεt is a mapping of(Ht , Rt , δt ) to R. Under assumptions CI1–CI7
(Ht , Rt , δt ) is a stationary Markov process with a unique ergodic set.‖

The best bid quote does not exist if there are no buy orders in the relative book. The ergodic set for the relative
order book contains the states where there are no orders in the book. The next assumption guarantees that the ergodic set
also contains books with limit buy orders in the book.

CI8 Suppose that there are no orders in the book at timet . Then, the probability that a buy order is submitted is
uniformly strictly positive, for all possible values ofRt .

Lemma B4. Under assumptions CI1–CI8, the best bid quote and the common value are cointegrated.

Proof of LemmaB4. By assumption,yt is I (1). From LemmaB3, ε̇t is stationary and ergodic and is equal to the
difference between the best bid quote andyt when there are buy orders in the relative book. The ergodic set contains
books with no orders. Assumption CI8 implies that books with buy orders are also in the ergodic set; and that the indicator
function for the event of buy orders in the book is also stationary and ergodic. The processεt ′ formed by sampling the
procesṡεt when there are buy orders on the book is also stationary.‖
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APPENDIX C. ECONOMETRICS APPENDIX

Our data consist of observations of the vector ofM conditioning variables,Xt , the decision indicators,dsell
t,s̈ , for s̈ ∈

S̈(Xt ), d
buy
t,b̈
, for b̈ ∈ B̈(Xt ), the realized fills for each order, and the realized product of the fills and the changes in the

estimated common value for each order. Letwt be the vector of variables whose conditional expectations we compute.
Define the conditional expectation functions

Csell
s̈ (Xt ) ≡ E[w|dsell

s̈,t = 1, Xt ], (C.1)

C
buy
b̈
(Xt ) ≡ E[w|d

buy
b̈,t

= 1, Xt ] (C.2)

for ∀ s̈ ∈ S̈(Xt ) and∀ b̈ ∈ B̈(Xt ), and define the vector of conditional expectations

C(Xt ) ≡ (Csell
s̈1
(Xt ),C

sell
s̈2
(Xt ), . . . ,C

buy
b̈2
(Xt ),C

buy
b̈1
(Xt )). (C.3)

The object to be estimated depends on the vector valued functionρ(C(Xt ), Xt ). Define

% ≡ E[I (Xt ∈ X̄)ρ(C(Xt ), Xt )], (C.4)

whereI (Xt ∈ X̄) is a trimming indicator for the set̄X in the interior of the support ofXt . Our estimator for% is

%̂T ≡
1

T

∑T

t=1
I (Xt ∈ X̄)ρ(Ĉ(Xt ), Xt ), (C.5)

whereĈ(Xt ) is estimated using a non-parametric kernel regression. For example,

Ĉsell
s̈ (Xt ) ≡

∑T

t ′ 6=t
wt ′d

sell
s̈,t ′K(h

−1
T (Xt ′ − Xt ))∑T

t ′ 6=t
K(h−1

T (Xt ′ − Xt ))

, (C.6)

wherehT is a bandwidth andK is a multidimensional kernel function.
In our applications, the vector of conditional expectations is

C(Xt ) ≡ (ψsell(s̈1, Xt ), ξ
sell(s̈1, Xt ), . . . , ψ

buy(b̈1, Xt ), ξ
buy(b̈1, Xt )). (C.7)

For testing monotonicity of the execution probabilities,

ρ(C(Xt ), Xt ) ≡



ψbuy(b̈1, Xt ) − ψbuy(b̈2, Xt ),

ψbuy(b̈2, Xt ) − ψbuy(b̈3, Xt ),

·
·
·

ψsell(s̈2, Xt ) − ψsell(s̈3, Xt )

ψsell(s̈1, Xt ) − ψsell(s̈2, Xt )


⊗ z++

t , (C.8)

wherez++
t are strictly positive measurable functions of the vectorXt , and⊗ is the Kronecker product. For testing

monotonicity of the thresholds, define the composite function

ρ(θ(C(Xt ), Xt ), Xt ) ≡



θbuy(b̈1, b̈2, Xt ) − θbuy(b̈2, b̈3, Xt )

θbuy(b̈2, b̈3, Xt ) − θbuy(b̈3, b̈4, Xt )

·
·
·

θsell(s̈3, s̈4, Xt ) − θsell(s̈2, s̈3, Xt )

θsell(s̈2, s̈3, Xt ) − θsell(s̈1, s̈2, Xt )


⊗ z++

t , (C.9)

and

θ(C(Xt ), Xt ) ≡ (θbuy(b̈1, b̈2, Xt ; C(Xt )), . . . , θ
sell(s̈1, s̈2, Xt ; C(Xt ))), (C.10)

with

θsell(s̈1, s̈2, Xt ; C(Xt )) = ps̈1,t −
(ps̈2,t − ps̈1,t )ψ

sell(s̈2, Xt )+ (ξsell(s̈1, Xt )− ξsell(s̈2, Xt ))

ψsell(s̈1, Xt )− ψsell(s̈2, Xt )
. (C.11)
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Under the assumptions EC1–EC6, the results inRobinson(1989) and Ahn and Manski(1993)5 imply that
√

T(%̂T − %) converges in distribution to a normal random vector with mean zero and covariance matrix defined in
equation (C.24) in what follows.

EC1 Xt , wt ,dsell
s̈,t ,d

buy
b̈,t
, are absolutely regular and the beta-mixing coefficient iso( j −ν ). Also,

supX∈X̄ ‖ρ(C(X), X)‖ϕ < ∞, (C.12)

whereν > 1+
2
ϕ−2 . For a definition of absolute regularity and the beta-mixing coefficient, seeRobinson(1989).

EC2 (a) The distribution ofXt has Lebesgue densityπ that is bounded and at leastM + 1 times differentiable, with
the firstM + 1 derivatives bounded.

(b) The realized fills and picking off risks have bounded support.
(c) C(Xt ) is M + 1 times differentiable with bounded derivatives.
(d) The conditional choice probabilities,

αsell
s̈ (Xt ) = Prob(dsell

s̈ = 1 | Xt ) (C.13)

are M + 1 times differentiable with bounded derivatives for alls̈ ∈ S̈(Xt ) and similarly on the buy side.
The functionπ(X)αsell

s̈ (X) satisfies

infX∈X̄ π(X)α
sell
s̈ (X) > 0 (C.14)

for ∀ s̈ ∈ S̈(Xt ), and similarly for the buy side.
EC3 (a) The partial derivatives satisfy

supXt ∈X̄

∥∥∥∥ ∂ρ(C(Xt ), Xt )

∂C(Xt )

∥∥∥∥ < ∞. (C.15)

(b) There is anF < ∞ such that the cross partial derivatives satisfy

supXt ∈X̄

∥∥∥∥∥ ∂2ρ(C(Xt ), Xt )

∂C(Xt )∂C(Xt )′

∥∥∥∥∥ < F . (C.16)

EC4 Define the matrix of expected derivatives as

µ(X) ≡ E

[
∂ρ(C(X), X)

∂C(X)

∣∣∣∣ X

]
, (C.17)

with generic elementµi j (X) with M + 1 bounded derivatives satisfying

µi j (X)

αsell
s̈ (X)

< ∞. (C.18)

EC5 Define the vector of error terms

εsell
s̈,t = dsell

s̈,t [wt − Csell
s̈ (Xt )], (C.19)

with a similar definition forεbuy
b̈,t

, and

εt =

∑
s̈∈S̈

εsell
s̈,t +

∑
b̈∈B̈

ε
buy
b̈,t

. (C.20)

There exists a positive semi-definite matrixC such that

supXt ∈X̄ limLL→∞

∑LL

ll =−LL
E[εt−ll ε

′
t+ll |Xt ] < C. (C.21)

EC6 (a) The bandwidth sequence is such thatT h2(M+1)
T → ∞, T1−2κh2M

T → 0 asT → ∞ for someκ > 0.
(b) The kernel functionK is bounded and symmetric around zero, satisfying

∫
K(z)dz = 1 and∫

|z|2(M+1)K(z)dz < ∞. There existsγ > 0 andc < ∞ such thatK satisfies the Lipschitz condition
that|K(z)−K(z′)| ≤ c|z − z′

|
γ for all z, z′

∈ RM .
(c) The firstM moments ofK are zero.

5. Ahn and Manski(1993) consider i.i.d. data. The uniform consistency results fromCollomb and Ḧardle(1986)
regarding the kernel estimators applied inAhn and Manski(1993) continue to apply under our assumptions.
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Define

ηt = ρ(C(Xt ), Xt )− % (C.22)

and the vector

et ≡

 εsell
s̈1,t

αsell
s̈1,t

(Xt )
, . . . ,

εsell
s̈K ,t

αsell
s̈K ,t

(Xt )
,

ε
buy
b̈1,t

α
buy
b̈,t
(Xt )

, . . . ,

ε
buy
b̈L ,t

α
buy
b̈L ,t

(Xt )

 . (C.23)

Then,

A = limLL→∞

∑LL

ll =−LL
E[(ηt−ll + µ(Xt−ll )

′et−ll )(ηt+ll + µ(Xt+ll )
′et+ll )

′
]. (C.24)

We estimateηt with ρ(Ĉ(Xt ), Xt )− %̂T . We estimateet using the kernel estimators in equations (C.19) and (C.20) and
using kernel estimators for the conditional choice probabilities in equation (C.13). We use aNewey and West(1987)
procedure to form an estimator forA.

The thresholds are linear inβ, and so the super-consistency of the cointegrating regression implies that the
asymptotic distribution is unaffected by pre-estimatingβ. SeeDe Jong(2001) for details.

Following Altug and Miller (1998) andHotz and Miller(1993), and the simulation evidence inRobinson(1989,
pp. 521–522) we use independent Gaussian product kernels in forming estimates of the conditional expectations. We use
bandwidths equal to

6 × 1·06× σ̂ (Xi t )T
1

2×6+2 . (C.25)

Here,Xt = (X1t , . . . , X5t ) are the conditioning variables, witĥσ(Xi t ) the associated sample standard deviations. We
trim the outer 5% of the observations:

X̄ = {X|(X − Ê(Xt ))ĉov(Xt )
−1(X − Ê(Xt ))

′
≤ 0·95}, (C.26)

whereĉov(Xt ) is the sample covariance matrix of the conditioning information andÊ(Xt ) is the sample mean, leaving
us with 19,732 observations.
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