Questions

1. L10.s4 (Unobserved Heterogeneity) Why do you call the case where s is unobserved but $p(x, s)$ is known as 'infeasible'? Is it because in this case, estimation is infeasible (this does not seem to be the case since you suggested an estimator), or is it because it is extremely unlikely that we would come across such a case (where s is unobserved but $p(x, s)$ is known)?
2. L12.s30 (Ascending Auctions) I have a question on the expression $\operatorname{Pr}\left(v_{i}>r_{t_{j}^{b}} \mid v_{i}>r_{t_{j-1}^{b}}\right)$. Why do we take the probability conditional on $v_{i}>r_{t_{j-1}^{b}}$?
3. L12.s32 How do we get the last equation?

$$
F_{V_{1}, V_{2}}\left(a_{1}, a_{2}\right)=F_{V}\left(a_{1}\right)-\operatorname{Pr}\left(V_{2}>a_{2}\right) \operatorname{Pr}\left(V_{1}<a_{1} \mid V_{2}>a_{2}\right)
$$

4. L14.s19 (Pure Moral Hazard) How did you figure out the functional form for $g(x, \gamma)$?
5. L14.s27 Where does the expression $\sqrt{N} Q_{0}^{(N)}(\gamma)$ come from?
6. L17.s6 (Human Capital \& Nonseparable Preferences) Why do we use the inverse of the marginal utility of wealth $\left(\eta_{n}^{-1}\right)$ as pareto weight?

0.1 Formula used for conditioning on a rival bid

We want to prove:

$$
F_{V_{1}, V_{2}}\left(a_{1}, a_{2}\right)=F_{V_{1}}\left(a_{1}\right)-\operatorname{Pr}\left\{V_{2}>a_{2}\right\} \operatorname{Pr}\left\{V_{1} \leq a_{1} \mid V_{2}>a_{2}\right\}
$$

Start out by noting that:

$$
\begin{align*}
F_{V_{1}, V_{2}}\left(a_{1}, a_{2}\right) & \equiv \operatorname{Pr}\left\{V_{1} \leq a_{1}, V_{2} \leq a_{2}\right\} \\
& =\operatorname{Pr}\left\{V_{2} \leq a_{2} \mid V_{1} \leq a_{1}\right\} \operatorname{Pr}\left\{V_{1} \leq a_{1}\right\} \\
& =\left[1-\operatorname{Pr}\left\{V_{2}>a_{2} \mid V_{1} \leq a_{1}\right\}\right] \operatorname{Pr}\left\{V_{1} \leq a_{1}\right\} \\
& =\operatorname{Pr}\left\{V_{1} \leq a_{1}\right\}-\operatorname{Pr}\left\{V_{2}>a_{2} \mid V_{1} \leq a_{1}\right\} \operatorname{Pr}\left\{V_{1} \leq a_{1}\right\} \tag{1}
\end{align*}
$$

But:

$$
\begin{align*}
\operatorname{Pr}\left\{V_{2}>a_{2} \mid V_{1} \leq a_{1}\right\} \operatorname{Pr}\left\{V_{1} \leq a_{1}\right\} & =\operatorname{Pr}\left\{V_{2}>a_{2}, V_{1} \leq a_{1}\right\} \\
& =\operatorname{Pr}\left\{V_{1} \leq a_{1} \mid V_{2}>a_{2}\right\} \operatorname{Pr}\left\{V_{2}>a_{2}\right\} \tag{2}
\end{align*}
$$

Substituting (2) into (1) gives:

$$
\begin{aligned}
F_{V_{1}, V_{2}}\left(a_{1}, a_{2}\right) & =\operatorname{Pr}\left\{V_{1} \leq a_{1}\right\}-\operatorname{Pr}\left\{V_{2}>a_{2} \mid V_{1} \leq a_{1}\right\} \operatorname{Pr}\left\{V_{1} \leq a_{1}\right\} \\
& =\operatorname{Pr}\left\{V_{1} \leq a_{1}\right\}-\operatorname{Pr}\left\{V_{1} \leq a_{1} \mid V_{2}>a_{2}\right\} \operatorname{Pr}\left\{V_{2}>a_{2}\right\} \\
& \equiv F_{V_{1}}\left(a_{1}\right)-\operatorname{Pr}\left\{V_{2}>a_{2}\right\} \operatorname{Pr}\left\{V_{1} \leq a_{1} \mid V_{2}>a_{2}\right\}
\end{aligned}
$$

which is what we set out to show.

