Dynamic Product Positioning in Differentiated Product Markets: The Effect of Fees for Musical Performance Rights on the Commercial Radio Industry A. Sweeting (Econometrica, 2013)

Yulia Dudareva, Olga Kiseleva, Phoebe Tian

University of Wisconsin-Madison

October 9th, 2017

Motivation

- Performance Rights Act (2009): music radio stations should pay for musical performance rights
- ► **Goal**: develop and estimate a dynamic discrete-choice model of format choice to predict how much format variety would change if fees of 10% or 20% of revenues were introduced
- Static models to predict how specific policy-interventions or mergers would affect product characteristics: Fan (2012), Nishida (2012), and Datta and Sudhir (2012)
- Dynamic model to understand the benefits and costs of radio mergers: Jeziorski (2013)

Empirical regularities

Data: 102 local radio markets from 2002-2005 (BIAfn; BIA Financial Network (2006))

- Listeners with different demographic characteristics have different tastes. Music stations have higher audience shares
- Advertisers have different values on listeners with different demographics
- Only one station permanently closes, and 55 stations begin operating
- The average owner in a market operates 2.5 stations with some clustering in the same format

Model

Setup

- Radio station owners (firms) o = 1,..., O_m in each market m play an infinite horizon game. Firm o owns a set of stations S^o, with F = 0, 1,..., 7 discrete formats to choose from.
- Each station's quality consists of:
 - Observed quality X_{st} with effects γ^s .
 - Unobserved quality ξ_{st}, independent of observed quality, and evolving according to an AR(1) process:

$$\xi_{st} = \rho \xi_{st-1} + v_{st}^{\xi} + \gamma^{\xi} \cdot \mathbb{1}_{\{F_{st} \neq F_{st+1}\}}$$
(1)

 Firms generate revenues by selling their audiences to advertisers. The audience is determined by a static discrete choice random coefficients logit model:

$$u_{ist} = \gamma_i^R + X_{st}\gamma^s + F_{st}(\bar{\gamma^F} + \gamma_D^F D_i) + \xi_{st} + \epsilon_{ist}^L \qquad (2)$$

and the advertising revenue for a listener with demographics D_d is determined by $r_{st}(D_d) = \gamma_m (1 + Y_{st}\gamma^Y)(1 + D_d\gamma_d)$

Model

Timing and Flow Profit Functions

- Each firm o observes the publicly observed state $M_{j,o,t}$, and pays fixed costs reduced by $C(M_{j,o,t})\theta^C$ for operating multiple stations in the same formats
- Each firm *o* observes its *ϵ_{ot}*, distributed Type 1 extreme value and scaled by *θ^ϵ*, and makes format choice *a_{ot}* ∈ *A_o*(*M_{j,o,t}*)
- Each firm *o* receives advertising revenues ∑_{s∈S^o} R_s(M_{j,o,t}|γ), pays repositioning costs W_o(a_{ot})θ^W and receives θ^εϵ_{ot}(a_{ot})

Define a firm's flow payoff as:

$$\pi_{ot}(a_{ot}, M_{j,o,t}, \theta, \gamma) + \theta^{\epsilon} \epsilon_{ot}(a_{ot})$$

$$= \underbrace{\sum_{s \in S^{o}} R_{s}(M_{j,o,t}, \gamma)}_{\text{advertising revenues}} + \underbrace{\beta C(M_{j,o,t}) \theta^{C}}_{\text{fixed cost saving next period}} - \underbrace{W_{o}(a_{ot}) \theta^{W}}_{\text{repositioning costs}} + \underbrace{\theta^{\epsilon} \epsilon_{ot}(a_{ot})}_{\text{payoff shock}}$$

Model

Value Functions and Equilibrium Concept

Firms are assumed to use stationary Markov Perfect Nash Equilibrium in pure strategies

$$V_o^{\Gamma}(M_{j,o,t},\epsilon_{ot}) = \max_{a \in A_o(M_{j,o,t})} \left\{ \pi(a, M_{j,o,t}) + \theta^{\epsilon} \epsilon_{ot}(a) + \beta \int V_o^{\Gamma}(M_{j,o,t+1}) f(M_{j,o,t+1} | a, \Gamma_{-o}, M_{j,o,t}) dM_{j,o,t+1} \right\}$$

Given the distribution of payoff shocks, the CCPs are:

$$P^{\Gamma_{o}}(a, M_{j,o,t}, \Gamma_{-o}) = \frac{exp(\frac{\nu_{o}^{\Gamma}(a, M_{j,o,t}, \Gamma_{-o})}{\theta^{\epsilon}})}{\sum_{a' \in A_{o}(M_{j,o,t})} exp(\frac{\nu_{o}^{\Gamma}(a', M_{j,o,t}, \Gamma_{-o})}{\theta^{\epsilon}})}$$
(4)

Identification

Identification of Primitives

Demand: Random Coefficient Logit Model:

$$u_{ist} = \gamma_i^R + X_{st}\gamma^s + F_{st}(\bar{\gamma^F} + \gamma_D^F D_i) + \xi_{st} + \epsilon_{ist}^L$$

37 moment restrictions for 37 parameters

Revenues:

$$r_{st}(D_d) = \gamma_m + \gamma_m \gamma_d D_d + \gamma_m \gamma^Y Y_{st} + \gamma_m \gamma^Y Y_{st} D_d \gamma_d$$

Demographic transition:

$$\log(\frac{pop_{met}}{pop_{met-1}}) = \tau_0 + \tau_1 \log(\frac{pop_{met-1}}{pop_{met-2}}) + u_{met}$$

Identification

Identification of Primitives

- Normalization: $\pi = 0$ for "temporarily off-air format"
- Initial Choice Probabilities:

$$P_{o}^{i}(a|\mathcal{M}_{jot}) = \frac{exp\left(\frac{v_{0}^{\Gamma}(a,\mathcal{M}_{jot},\Gamma_{-0})}{\theta^{\varepsilon}}\right)}{\sum_{a'\in\mathcal{A}_{o}(\mathcal{M}_{jot})}exp\left(\frac{v_{0}^{\Gamma}(a',\mathcal{M}_{jot},\Gamma_{-0})}{\theta^{\varepsilon}}\right)}$$

Payoffs:

$$\pi_{ot}(a_{ot}, M_{j,o,t}, \theta, \gamma) + \theta^{\epsilon} \epsilon_{ot}(a_{ot}) \\ = \sum_{s \in S^{o}} R_{s}(M_{j,o,t}, \gamma) + \beta C(M_{j,o,t}) \theta^{C} - W_{o}(a_{ot}) \theta^{W} + \theta^{\epsilon} \epsilon_{ot}(a_{ot})$$

 $\blacktriangleright~\theta^{\varepsilon}$ is identified since revenues are treated as observable

Identification

Identification of Counterfactuals

Systematic part of the payoff:

$$\begin{split} \tilde{\pi}(P_o^i(\mathcal{M}_{jot}), \theta^i) &= \sum_{s \in S^o} R_s(\mathcal{M}_{jot} | \gamma) + \sum_{a \in \mathcal{A}_o(\mathcal{M}_{jot})} P_o^i(a | \mathcal{M}_{jot}) \times \\ & \left(\beta C_o(a) \theta^{Ci} - W_o(a) \theta^{Wi} + \theta^{\varepsilon i} (\varkappa - \log(P_o^i(a | \mathcal{M}_{jot})))\right) \end{split}$$

where \varkappa is Euler constant

- depends only on CCPs, so, it is identified (Hotz-Miller invertion theorem)
- Aguirregabiria (2005):

Counterfactual optimal choice probabilities are identified if (1) the discount factor, (2) the distribution of unobservables, (3) the flow payoff differences are also known

Estimation

- Step 1: Estimate γ and ξ
 - ► Random-coefficient demand model (GMM to avoid potential endogeneity) ⇒ infer ξ by Berry and Nevo algorithm
 - Revenue function (NLLS)
 - Firm's initial CCP's (multinomial logit)
 - Demographics transition process (2SLS)
- Step 2: Estimate θ
 - Value Function approximation (parametric and forward simulation)
 value functions are approximated by a linear function of K functions (\$\phi\$) of a specific set of N states:

$$V_o^P(M_{j,o,t}) \simeq \sum_{k=1}^K \lambda_k \phi_{ko}(M_{j,o,t})$$

Estimation

Step 2 1. Compute payoffs from γ , CCPs and current guess of θ :

$$\begin{split} \tilde{\pi}(P_o^i(\mathcal{M}_{jot}),\theta^i) &= \sum_{s\in S^o} R_s(\mathcal{M}_{jot}|\gamma) + \sum_{a\in \mathcal{A}_o(\mathcal{M}_{jot})} P_o^i(a|\mathcal{M}_{jot}) \times \\ & \left(\beta C_o(a)\theta^{Ci} - W_o(a)\theta^{Wi} + \theta^{\varepsilon i}(\varkappa - \log(P_o^i(a|\mathcal{M}_{jot}))\right) \end{split}$$

- 2. Compute parameters of approximation $\boldsymbol{\lambda}$
- 3. Use λ to get future value of each firm when it chooses a
- 4. Estimate θ' by MLE

$$P_{o}^{i}(a|\mathcal{M}_{jot}) = \frac{exp\left(\frac{FV(a,\mathcal{M}_{jot},P_{o}^{i}) - W_{o}(a)\theta^{W} + \beta C_{o}(a)\theta^{C}}{\theta^{\varepsilon}}\right)}{\sum_{a'\in\mathcal{A}_{o}(\mathcal{M}_{jot})}exp\left(\frac{FV(a',\mathcal{M}_{jot},P_{o}^{i}) - W_{o}(a')\theta^{W} + \beta C_{o}(a)\theta^{C}}{\theta^{\varepsilon}}\right)}$$

5. Use θ' to update CCPs

Asymptotics

Step 1: Estimate γ and ξ

- Listener demand: (random coefficient model estimated by GMM) consistent and converges with \sqrt{N} under standrd assumptions
- \blacktriangleright Revenue function (NLLS), Demographics (2SLS) are consistent and converges with \sqrt{N}
- ► CCP's are estimated by MLE (multinomial logit): estimates are consistent; rate of convergence is √N (CLT holds)
- Step 2: Estimate θ
 - Value function approximation:
 PMLE gives consistent and √N-converging estimates for θ (Aguirregabiria and Mira, 2007) if CCPs estimates are consistent and √N-converging.
 - Standard errors are calculated using a bootstrap
 - Estimates are more efficient since outside information is used

Results

- Dynamic discreet-choice model of a format choice allowing for
 - vertical and horizontal differentiation
 - heterogenous customers' tastes and their different values to the advertisers
 - multi-station ownership
- after 20 years:
 - ▶ 10% fees reduce the number of music stations by 9.4% (music listening falls by 6.3%)
 - 20% fees reduce the number of music stations by 20% (music listening falls by 13.4%)
- Not as dramatic decline as predicted: many valuable listeners prefer music programming to non-music one
- Long-run adjustment takes place pretty quickly: for both 10% and 20% fee, at least 40% of long-run change in the number of stations is completed within 2.5 years

Summary

- ▶ What determines product variety: Borenstein and Netz (2002), George and Waldfogel (2003), Watson (2009) ⇒ natural model for oligopoly
 - radio industry: Berry and Waldfogel (2001) and Sweeting (2010).
- ► Static structural models predicting how policy-interventions or mergers affect product characteristics: Fan (2012), Nishida (2012), and Datta and Sudhir (2012) ⇒ dynamic model with non-immediate adjustment (effect and speed of adjustment)
- Justified implementation of either value function approximation method for large state spaces required for studying an industry's evolution