Equilibrium Tuition, Applications, Admissions, and Enrollment in the College Market by Chao Fu (2014)

Presented by Jingnan Liu, Ziqi Qiao, Wenqi Wu

11/20/2017

Introduction

- Interested in counter-factual college attendance and tuition levels.
- Related literature: Manski and Wise (1983); Arcidiacono(2005); Epple, Romano, and Sieg (2006).
- Model college tuition, applications, admissions and enrollment as joint outcomes from a subgame perfect Nash equilibrium (SPNE).
 - $\diamond~$ Costly application, heterogeneous student ability and preferences
 - $\diamond\,$ Noisy signals of student ability
- Timing:
 - $\diamond~$ Stage 1: colleges simultaneously announce tuition (committed)
 - ♦ Stage 2: Students apply. Colleges simultaneously admit.
 - $\diamond\,$ Stage 3: Students learn admission and aid decisions, then enroll.
- Estimation following Moro (2003) and using NLSY97.

Setup: Colleges

- Student *i* can apply to *J* four-year colleges indexed by *j*, each with fixed capacity κ_j . $\kappa_j > 0 \ \forall j$ and $\sum_{j=1}^J \kappa_j < 1$. *j* divided into four groups (g_j) .
- One two-year community college indexed by j = J + 1 with no application needed.
- Focus on symmetric equilibrium (same college policies within g_j)
- Private college j has payoff:

$$W_j = \int (\omega_{a_i} + m_{1j} \pi_{ji}) dF_j^*(i) + m_{2j} \frac{\Pi_j^2}{N_j}, \text{ where } \pi_{ji} = t_{ji} - f_{ji} \quad (1)$$

• Public college j has payoff:

$$W_{j} = \sum_{\iota}^{1} \left[\int (\omega_{a_{i}} + m_{1j_{\iota}} \pi_{ji_{\iota}}) dF_{j_{\iota}}^{*}(i) + m_{2j_{\iota}} \frac{\Pi_{j_{\iota}}^{2}}{N_{j_{\iota}}} \right], \text{ where } \iota \equiv I(l_{i} = l_{j})$$
(2)

Setup: Students

- Students divided into unobserved types K(A, z) with ability $A \in \{1, 2, 3\}$ and public/private college preference $z \in \{1, 2\}$. Distributed according to P(K|SAT, B).
- Student *i* obtains general financial aid f_{0i} and college-specific aid f_{ji}

$$f_{ij} = max\{f_j(B_i, SAT_i) + \eta_{ji}, 0\}, \ \eta_{ij} \sim N(0, \Omega_\eta)$$
(3)

• A type K student i's preferences for colleges j is

$$u_{ji} = \bar{u}_{g_jK} + \epsilon_{1g_ji} + \epsilon_{2ji}, \ \epsilon_{1g_ji} \sim N(0, \sigma_{\epsilon_{1g_ji}}^2), \ \epsilon_{2ji} \sim N(0, \sigma_{\epsilon_{2ji}}^2)$$
(4)

• Given tuition profile $t\{\{t_{jl}\}_l\}_j$ and distast for studying out-state $\xi_i \sim N(\bar{\xi}_K, \sigma_{\xi}^2)$, the expost value of attending j for i is:

$$U_{ji}(t) = (-t_{ji} + f_{0i} + f_{ji}) + u_{ji} - I(l_j \neq l_i)\xi_i$$
(5)

Decision: Student's Problem

- Information: Student has private info $X_i = (K_i, B_i, \epsilon_i)$
- Enrollment: Strategy $d(O_i, X_i, \eta_i | t)$ solves:

$$v(O_i, X_i, \eta_i | t) = max\{U_{oi}, \{U_{ji}(t)\}_{j \in O_i}\}$$
(6)

• Application: Given admission probability $p_j(A_i, SAT_i|t)$, value of application portfolio Y is

$$V(Y, X_i, SAT_i|t) = \sum_{O \subseteq \{Y, J+1\}} Pr(O|A_i, SAT_i, t) E[v(O, X_i, \eta_i|t)] - C(|Y|)$$
(7)

and strategy $Y(X_i, SAT_i|t)$ solves $max_{Y \in \{1,...,J\}} \{V(Y, X_i, SAT_i|t)\}$

Decision: College's Problem

- Information: Colleges observes SAT and signal $s \in \{1, 2, 3\}$ of applicant's ability A. P(s|A) is public knowledge. Also observes $l_i \in B_i$ if practicing origin-based discrimination.
- Admission policy $e_j(s, SAT|t)$ maximizes

$$\sum_{s,SAT} e_j(s,SAT|t)\alpha_j(s,SAT|t,e_{-j},Y,d)\mu_j(s,SAT|\cdot)\gamma_j(s,SAT|\cdot)$$
(8)

subject to

$$\sum_{s,SAT} e_j(s,SAT|t)\alpha_j(s,SAT|t,e_{-j},Y,d)\mu_j(s,SAT|\cdot) \le \kappa_j$$
(9)

$$e_j(s, SAT|t) \in [0, 1] \tag{10}$$

• Tuition policy t_{jl} maximizes $E(W_j | AE(t_j, t_{-j}))$, with private college tuition the same across l. $AE(\cdot)$ is the equilibrium profile.

Subgame Perfect Nash Equilibrium

- Given tuition profile t, a symmetric application-admission equilibrium, denoted as AE(t), is $(d(\cdot|t), Y(\cdot|t), e(\cdot|t), p(\cdot|t))$ such that
 - $\diamond~d(O,X,\eta|t)$ is an optimal enrollment decision for every (O,X,η)
 - $\diamond~$ given $p(\cdot|t),\,Y(X,SAT|t)$ is an optimal college application portfolio for every (X, SAT)
 - ♦ for every j, given $(d(\cdot|t), Y(\cdot|t), p_j(\cdot|t))$, $e_j(\cdot|t)$ is an optimal admission policy, and $e_j(\cdot|t) = e_{j'}(\cdot|t)$ if $g_j = g_{j'}$

 $\diamond \ p_j(A,Sat|t) = \sum_s P(s|A) e_j(s,SAT|t)$ (consistency)

• A symmetric subgame perfect Nash equilibrium for the college market is $(t*), d(\cdot|\cdot), Y(\cdot|\cdot), e(\cdot|\cdot), p(\cdot|\cdot))$ such that

 $\diamond \ \text{for every t}, (d(\cdot|\cdot), Y(\cdot|\cdot), e(\cdot|\cdot), p(\cdot|\cdot)) \ \text{constitutes and AE(t)}$

 $\diamond~$ for every j, given $t*_{-j},\,t*_{j}$ solves tuition policy problem, and $t*_{j}=t*_{j'}$ if $g_{j}=g_{j'}$

Identification

Information asymmetry

- Both application and admission decisions depend on student type K = (A, z), which is only observable to student.
- Colleges infer the types from private signal s and SAT.

Identification of primitives also requires identification of

- Type distribution P(K|SAT, B) conditional on SAT and family background
- Signal distribution P(s|A) conditional on ability type

Identification

Point identified: type distribution P(K|SAT, y), systematic tastes u_g , application cost c, admission probability $p_j(A, SAT)$

- Assumption I1: The number of student type is finite; idiosyncratic tastes are i.i.d. noises drawn from single-mode distributions; tastes are independent of (SAT, y, K).
- Assumption I2: At least one variable in the financial aid function is excluded from the type distribution function; conditional on (SAT, y), this variable is independent of K.
- Proof is done in a 2-type 1-college environment.

Ability values ω to colleges are not point identified.

Empirical Strategy

The challenges are

- Potential multiple equilibria
- Equilibrium computation

The strategy is to

- Assume that agents play the same equilibrium
- Exploit subgame perfection admission probabilities $\{p_j\}$ (CCP) uniquely determines the equilibrium.
 - $\diamond\,$ Knowing $\{p_j\}$ is sufficient for student to choose application portfolio
 - $\diamond\,$ Knowing $\{p_{-j}\}$ is sufficient for college to choose admission policy

3-step Estimation

- Treat $\{p_j\}$ as parameters and estimate them along with student-side parameters (SMLE)
 - ◊ Test the existence of origin-based admissions Can't reject the null of origin-independent admission Assume the irrelevance of origin
 - $\diamond\,$ Assume that admission is independent of net tuition revenue
- Solve each college's decision problem and fit college-side parameters to $\{\hat{p}_j\}$ and capacity κ_j (SMDE)
- Recover college's taste for tuition by matching college's tuition levels (GMM)

Data

- NLSY97, 1646 observations
 - $\diamond~54\%$ not apply for 4Y; 23% attend 2Y; 42% attend 4Y
- Information: application, admission, financial aid, enrollment, SAT/ACT, family background
- Assume a student can apply for at most two colleges within each group
 - \diamond Reduce computation
 - $\diamond~$ Capture competition between colleges within a group
 - $\diamond\,$ Consistent with most application behaviors

Model Fit

	Data	Model		
	A. Number of	mber of Applications (%)		
Size:				
0	54.2	54.5		
1	28.0	27.8		
2 or more	17.8	17.7		
χ^2 statistic	.06			
	B. Application and Admission: Applicants (%)			
Application rate:				
(pri, elite)	9.7	9.4		
(pub, elite)	31.8	29.0		
(pri, non)	44.6	44.4		
(pub, non)	71.5	67.6		
Admission rate:				
(pri, elite)	53.4	58.5		
(pub, elite)	83.0	90.1		
(pri, non)	91.4	91.5		
(pub, non)	94.0	95.9		
	C. Final Allocation of Students (%)			
(pri, elite)	1.0	1.5		
(pub, elite)	7.7	8.0		
(pri, non)	11.5	10.9		
(pub, non)	21.9	20.2		
2-year college	22.7	22.9		
Noncollege	35.2	36.5		
χ^2 statistic		6.9		
	D. Home Bias (%)			
Home-only applicants	65.6	67.5		
Home-state attendees	76.2	78.0		

MODEL VERSUS DATA

The model fits well, but it's unclear which moments are not targeted.

Heterogeneous Preference for College Groups

- Preference for non-college is set to 0.
- The estimation uses 1-year tuition.

	(pri, elite)	(pub, elite)	(pri, non)	(pub, non)	2-Year
$\bar{u}_{g}(A=1,z=1)$	-187.7	-183.2	-123.5	-188.6	-38.1
	(188.0)	(5.1)	(3.8)	(4.4)	(1.7)
$\bar{u}_{z}(A=2, z=1)$	-42.2	-37.2	31.0	56.8	36.1
	(66.5)	(4.6)	(1.4)	(2.1)	(1.4)
$\bar{u}_{g}(A=3, z=1)$	-52.8	127.3	8.2	73.2	9.8
	(21.4)	(.4)	(7.6)	(3.9)	(4.5)
$\bar{u}_{g}(A=2, z=2)$	-74.4	-115.7	96.6	19.4	-13.3
	(29.4)	(34.9)	(4.6)	(3.19)	(5.6)
$\bar{u}_{g}(A=3, z=2)$	139.9	30.4	35.6	-66.2	-12.7
8 /	(14.3)	(14.5)	(19.5)	(16.4)	(33.2)
$\sigma_{\epsilon_{1r}}^2$ (college group)	49.9	24.9	42.3	57.4	61.4
	(8.4)	(3.0)	(1.0)	(1.8)	(1.2)
$\sigma_{\epsilon_0}^2$ (specific college)			$\hat{61.5}$		
			(1.2)		

Preferences for Colleges (\$1,000)

NOTE.—The restriction $\bar{u}_g(A = 1, z = 2) = \bar{u}_g(A = 1, z = 1)$ holds at a 10 percent significance level.

Counterfactual: Increasing Capacity of Public Non-elite

New 1: Lower bound for 4-year college tuition is set to \$2,744, the level of community college

New 2: Community college tuition and the same lower bound become 0.

	Baseline	New 1	New 2	All Oper and Free	
	A. Attendance (%)				
4-year	40.6	43.2	44.2	55.6	
2-year	22.9	21.9	22.9	18.0	
	B. Attendance by Ability (%)				
A = 1:					
4-year	1.0	3.5	4.3	18.9	
2-year	27.0	26.5	29.2	26.5	
A = 2:					
4-year	72.3	75.1	76.7	86.9	
2-year	24.0	21.9	21.1	12.7	
A = 3:					
4-year	93.3	94.1	94.4	97.8	
2-year	5.8	5.3	5.1	2.2	

INCREASING SUPPLY

Counterfactual: SAT-based Admission

• Elite colleges raise tuition to screen, nonelite colleges lower tuition to compete

	(pub, elite)			(pub, non)		
	(pri, elite)	In-State	Out-of-State	(pri, non)	In-State	Out-of-State
Baseline	27,530	5,090	13,892	16,891	3,451	10,540
New	30,028	5,131	14,079	14,800	3,083	9,426

Ignore Signals: Tuition (\$)

• In equilibrium, enrollee ability drops in elite colleges and increases in nonelite colleges

IGNORE SIGNALS: HIGH-ABILITY STUDENTS (%)

	(pri, top)	(pub, top)	(pri, non)	(pub, non)
Baseline	94.7	80.2	11.0	15.9
New	86.4	79.0	12.7	16.1

Conclusion

- This paper
 - ◊ Estimates a market equilibrium model of tuition setting, applications, admissions and enrollment.
 - ♦ Simultaneously models students heterogeneity, uncertainty and costs in application, noisy measures.
 - $\diamond\,$ Exploits subgame perfection to facilitate estimations
- To do so, need to
 - ◊ Assume tuition agent and admission agent make decisions separately (without sequential rationality)
 - ◊ Capture forces outside the model by preference parameters, which might affect the counterfactuals.