A Structural Evaluation of a Large-Scale Quasi-Experimental Microfinance Initiative

Kaboski and Townsend (Econometrica, 2011) Marco Duarte and Mizuhiro Suzuki

November 5, 2017

# The Thai Million Baht Fund program

What is the effect of a microcredit intervention program on the credit market and on household behaviour?

- Thai government's transfer program of village-level microcredit funds, beginning in 2001:
  - \$24,000 distributed to each of the 77,000 Thai villages;
  - every village was eligible;
  - money was a grant to the village fund.
- Villagers organize the fund and distribute loans through competitive applications:
  - loans uncollateralized, though most required guarantors;
  - common loan criteria: reasons for borrowing, ability to repay and need for funds.
  - Iow default rates (3%);
  - average nominal interest rate of 7% (above average money market rate in Bangkok).

# Previous analyses

Gertler, Levine and Moretti (2003), Karlan and Zinman (2009), Banerjee, Duflo, Glennerster and Kinnan (2010),

**Kaboski & Townsend (2009)** : Reduced-form paper, where village size is used as IV for village fund credit. Results:

- more borrowing
- no change on interest rate
- higher level of consumption
  - almost one to one increase with additional money in the fund
- no effect on investment

# Previous analyses

Gertler, Levine and Moretti (2003), Karlan and Zinman (2009), Banerjee, Duflo, Glennerster and Kinnan (2010),

**Kaboski & Townsend (2009)** : Reduced-form paper, where village size is used as IV for village fund credit. Results:

- more borrowing
- no change on interest rate
- higher level of consumption
  - almost one to one increase with additional money in the fund
- no effect on investment

#### PUZZLE!

### Kaboski & Townsend, 2011 Summary

- Structural model of household behaviour:
  - borrowing constraints,
  - income uncertainty,
  - high-yield indivisible investment opportunities.
- Estimate parameters using preprogram data;
  - Method of Simulated Moments
- Predictive Power:
  - Simulate the program shock
  - Compare the predicted effect with the real data
- Cost-Benefit Analyses.

# Model

#### Restrictions

At t+1,

$$L_{t+1} \equiv Y_{t+1} + S_t(1+r) \equiv P_{t+1}U_{t+1} + S_t(1+r)$$

Permanent income:

$$P_{t+1} = P_t G N_{t+1} + R D_{I,t} I_t^* \equiv P_t G N_{t+1} + R D_{I,t} i_t^* P_t$$

Borrowing Constraint:

$$S_t \geq \underline{s}P_t$$

Default:

$$[\underline{s}P_t > L_t - \underline{c}P_t] \Rightarrow [D_{def,t} = 1] \Rightarrow [C_t = \underline{c}P_t, S_t = \underline{s}P_t, D_{I,t} = 0]$$

 $^{1}\log U_{t+1} \sim N(0,\sigma_{u}^{2}), \log N_{t+1} \sim N(0,\sigma_{N}^{2}), \log i_{t}^{*} \sim N(\mu_{i},\sigma_{i}^{2})$ 

# Model Sequential Problem

$$V(L_0, I_0^*, P_0) = \max_{\{C_t > 0\}, \{S_{t+1}\}, \{D_{I,t}\}} \mathbb{E}_0\left[\sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\rho}}{1-\rho}\right]$$

subject to:

$$C_{t} + S_{t} + D_{I,t}I_{t}^{*} \leq L_{t} = P_{t}U_{t} + S_{t-1}(1+r)$$
$$P_{t} = P_{t-1}GN_{t} + RD_{I,t-1}i_{t-1}^{*}P_{t-1}$$
$$\underline{s}P_{t} \leq S_{t}$$

### Model Simplifying

We can define  $P^{1-\rho}v(I, i^*) \equiv V(L, I^*, P)$ , where:

$$v(I, i^*) = \max_{c, d_I} \left\{ \frac{c^{1-\rho}}{1-\rho} + \beta \mathbb{E} \left[ (p')^{1-\rho} v \left( U' + \frac{(1+r)(I-c-d_I i^*)}{p'}, i^{*'} \right) \right] \right\}$$

subject to:  $(I - c - d_I i^*) \ge \underline{s}$  $p' = GN' + Rd_I i^*$ 

# Model

Solution Example



Figure: Consumption policy for fixed  $i^*$ .

## Data

- 1. For year t and household n, gross data from TTDP:  $\tilde{C}_{n,t}$ ,  $\tilde{I}_{n,t}$ ,  $\tilde{D}_{def,n,t}$ ,  $\tilde{Y}_{n,t}$  and  $S_{n,t}$ .
- 2. Adjusting for Demographic and Cyclical Variation  $\tilde{z} \in { \tilde{C}_{n,t}, \tilde{D}_{def,n,t}, \tilde{Y}_{n,t}, \exp(\tilde{L}_{n,t}/\tilde{Y}_{n,t}) }:$

2.1 Regress: 
$$\log(\tilde{z}_{n,t}) = \gamma_z X_{n,t} + \theta_{z,j,t} + e_{z,n,t}$$
  
2.2 Define:  $\log(z_{n,t}) = \hat{\gamma}_z \bar{X} + \bar{\theta}_{z,j} + g_z(t-1999) + \hat{e}_{z,n,t}$ 

3. Calibrating investment return R:

 $\varepsilon_R = Y_t - \text{imputed labor income}_t - R(\text{physical assets}_t)$ 

Final Data:  $\{C_{n,t}, I_{n,t}, D_{def,n,t}, Y_{n,t}, S_{n,t}\}_{(n,t)=(1,1997)}^{(715,2001)}$  and R = 0.11.

# Identification

**Parameters**:  $\{r, \sigma_N, \sigma_u, G, \underline{c}, \beta, \rho, \mu_i, \sigma_i, \underline{s}, \sigma_E\}$  **Moments**( $\varepsilon$ ):

$$\begin{split} \mathbb{E}[(\text{Interest Income})_t - rS_{t-1}] &= 0\\ \mathbb{E}[(\text{Debt Repayment})_t - rCR_{t-1}] &= 0\\ \mathbb{E}[ln(Y_{t+1}/Y_t) - \mathbb{E}[(Y_{t+1}/Y_t)|L_t, Y_t]] &= 0\\ \mathbb{E}[D_{def,t} - \mathbb{E}[D_{def,t}|L_t, Y_t]] &= 0 \end{split}$$

$$\mathbb{E}\left[\begin{array}{c} [ln(Y_{t+k}/Y_t) - \mathbb{E}[ln(Y_{t+k}/Y_t)]]^2 - \\ \mathbb{E}[[ln(Y_{t+k}/Y_t) - \mathbb{E}[ln(Y_{t+k}/Y_t)]]^2 | L_t, Y_t] \quad (k = 1, 2, 3) \end{array}\right] = 0$$

For  $z \in \{C_t, D_{I,t}, D_{I,t}I_t\}$ ,

$$\mathbb{E}[z - \mathbb{E}[z|L_t, Y_t]] = 0$$
$$\mathbb{E}[(z - \mathbb{E}[z|L_t, Y_t])\log(Y_t)] = 0$$
$$\mathbb{E}[(z - \mathbb{E}[z|L_t, Y_t])(L_t/Y_t)] = 0$$

# Method of Simulated Moments

#### Moment Condition: $\mathbb{E}[\varepsilon(\theta)] = 0$

- Simulate the error terms R times
  - ► *U<sub>t</sub>*: transitory income shock
  - ► *N<sub>t</sub>*: shock in permanent income
  - I<sup>\*</sup>: random project size
  - multiplicative measurement error in income  $\sim \log N(0, \sigma_E)$
- Solve the dynamic programming problem to obtain ε(θ)<sup>(r)</sup> for each time
- Take the average and use  $\frac{1}{R}\sum_{r=1}^{R} \varepsilon(\theta)^{(r)}$  as  $\mathbb{E}[\varepsilon(\theta)]$

# Results

#### PARAMETER ESTIMATES AND MODEL FIT

| Parameter Estimates                                  |          |            |  |  |  |  |  |
|------------------------------------------------------|----------|------------|--|--|--|--|--|
| Parameter                                            | Estimate | Std. Error |  |  |  |  |  |
| Borrowing/savings interest rate, r                   | 0.054    | 0.003      |  |  |  |  |  |
| Deviation of log permanent income shock, $\sigma_N$  | 0.31     | 0.11       |  |  |  |  |  |
| Deviation of log transitory income shock, $\sigma_U$ | 0.42     | 0.07       |  |  |  |  |  |
| Deviation of log measurement error shock, $\sigma_E$ | 0.15     | 0.09       |  |  |  |  |  |
| Exogenous income growth, $G$                         | 1.047    | 0.006      |  |  |  |  |  |
| Minimum consumption, c                               | 0.52     | 0.01       |  |  |  |  |  |
| Discount factor, $\beta$                             | 0.926    | 0.006      |  |  |  |  |  |
| Intertemporal elasticity, $\rho$                     | 1.20     | 0.01       |  |  |  |  |  |
| Mean log project size, $\mu_i$                       | 1.47     | 0.09       |  |  |  |  |  |
| Deviation of log project size, $\sigma_i$            | 6.26     | 0.72       |  |  |  |  |  |
| Borrowing limit, s                                   | -0.08    | 0.03       |  |  |  |  |  |

| Pre-Intervention Averages |        |        |  |  |  |  |
|---------------------------|--------|--------|--|--|--|--|
| Variable                  | Data   | Model  |  |  |  |  |
| $C_t$                     | 75,200 | 75,800 |  |  |  |  |
| $D_t$                     | 0.116  | 0.116  |  |  |  |  |
| $I_t$                     | 4600   | 4600   |  |  |  |  |
| $DEF_t$                   | 0.194  | 0.189  |  |  |  |  |
| $\ln(Y_{t+1}/Y_t)$        | 0.044  | 0.049  |  |  |  |  |

Predictive Power: Thai Million Baht Fund Program

1. For each village v, a surprise decrease in liquidty constraint from  $\underline{s} = -0.08$  to  $\underline{s}_v^{mb}$ :

$$\begin{split} \frac{1}{\mathcal{N}} \sum_{n=1}^{\mathcal{N}} \{ \mathbb{E}[B_{n,t,v}^{mb} | L_{n,t}, Y_{n,t}; \underline{s}_{v}^{mb}] - \mathbb{E}[B_{n,t,v} | L_{n,t}, Y_{n,t}; \underline{s}] \} \\ = \frac{\text{Funding per village (950,000 baht)}}{\# \text{ HHs in village}_{v}} \end{split}$$

2. Simulate 500 post-program data and run regressions with (a) Actual post-program data, (b) Simulated post-program data:

$$Z_{n,t} = \sum_{j \in \text{post program}} \alpha_{Z,j} \frac{950,000}{\# \text{ HHs in village}_v} \mathcal{I}_{t=j} + \theta_t + e_{n,t}$$

# **Predictive Power**

# Figure: Reduced Form Regression Estimates: Actual Data Versus Model Simulated Data

|                               | Consumption           |                     | Investment Probability |         |
|-------------------------------|-----------------------|---------------------|------------------------|---------|
|                               | γ <sub>C</sub> , 2002 | γ <sub>C,2003</sub> | γD,2002                | γD,2003 |
| Actual data                   |                       |                     |                        |         |
| "Impact" coefficientb         | 1.39                  | 0.90                | 6.3e-6                 | -0.2e-6 |
| Standard error                | 0.39                  | 0.39                | 2.4e-6                 | 2.4e-6  |
| Simulated data                |                       |                     |                        |         |
| Average "impact"              |                       |                     |                        |         |
| coefficienta                  | 1.10                  | 0.73                | 5.6e-6                 | 3.6e-6  |
| Average standard error        | 0.48                  | 0.48                | 2.5e-6                 | 2.5e-6  |
| Chow test significance levele | 0.                    | 55                  | 0                      | .51     |

|                               | Investment |                  | Default Probability |           | Income Growth                 |                           |
|-------------------------------|------------|------------------|---------------------|-----------|-------------------------------|---------------------------|
|                               | γI, 2002   | γ <i>I</i> ,2003 | YDEF,2002           | γDEF,2003 | $\gamma_{\Delta \ln Y, 2002}$ | γ <sub>Δ</sub> in Y, 2003 |
| Actual data                   |            |                  |                     |           |                               |                           |
| "Impact" coefficientb         | -0.04      | -0.17            | -5.0e-6             | 6.4e-6    | -9.4e-6                       | 12.6e - 6                 |
| Standard error                | 0.19       | 0.19             | 2.4e-6              | 2.4e-6    | 6.1e-6                        | 6.1e-6                    |
| Simulated data                |            |                  |                     |           |                               |                           |
| coefficienta                  | 0.41       | 0.35             | -9.0e-6             | -0.2e-6   | 0.3e-6                        | 0.3e-6                    |
| Average standard error        | 0.23       | 0.23             | 2.3e-6              | 2.3e-6    | 5.9e-6                        | 5.9e-6                    |
| Chow test significance levele | 0.99       |                  | 0.27                |           | 0.30                          |                           |

# Cost-Benefit Analysis

Which has lower cost, the microcredit or a simple liquidity transfer program?

Solve for 
$$T_n$$
:

$$\mathbb{E}[V(L, P, I^*; \underline{s}_v^{mb} | Y_{n,v}, L_{n,v})] = \mathbb{E}[V(L+T_n, P, I^*; \underline{s} | Y_{n,v}, L_{n,v})]$$

- Average cost of 7000 baht per household (30% less)
- Large heterogeneity across households