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Preliminaries
The data generating process

Define a class of models by the set Θ, where each element θ ∈ Θ
denotes one model in the class.

Loosely speaking θ is a parameterization of the model.

Denote by Xt the stochastic process generated by θ ∈ Θ producing
the data as outcomes.

Let fθ (. . . , xt−1, xt , xt+1, . . .) denote the joint density/distribution
function of Xt generated θ ∈ Θ.
Denote by z the set of such distributions induced by Θ. We interpret
fθ (. . . , xt−1, xt , xt+1, . . .) as a mapping fθ : Θ −→ z.
The data consists of T observations, a partial realization of Xt ,
relabelled {x1, x2, . . . , xT }.
If the data comes from the parameterization θ0 ∈ Θ, we call
fθ0 (. . . , xt−1, xt , xt+1, . . .) the data generating process (DGP).
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Preliminaries
Observational equivalence and point identification defined

For all θ′ ∈ Θ we define the set Θ′ ⊆ Θ as:

Θ′ ≡ {θ ∈ Θ: fθ (. . . , xt−1, xt , xt+1, . . .) = fθ′ (. . . , xt−1, xt , xt+1, . . .)}

We say θ and θ′ are observationally equivalent if (and only if) θ ∈ Θ′.
In other words the DGP for two observationally equivalent models is
identical.

The model is point identified if Θ′ is a singleton for all θ′ ∈ Θ.
That is Θ is point identified if, for all θ ∈ Θ and θ′ ∈ Θ with θ 6= θ′:

fθ (. . . , xt−1, xt , xt+1, . . .) 6= fθ′ (. . . , xt−1, xt , xt+1, . . .)
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Introduction
Nonstationarity and short panels

Dynamic discrete choice models are used to explain panel data in
labor economics, industrial organization and marketing.

Interpreting predictions of policy innovations from structural models
critically depends on the identifying assumptions of the model.

This lecture focuses on distinctions between short and long panel
data sets.

Short panels are samples from nonstationary data generating
processes where the time horizon of the agent extends beyond the
length of the data.

Long panels are data generated from stationary processes, or by
nonstationary data generating processes that sample every event with
strictly positive probability in a finite horizon model.
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Introduction
Short panels and nonstationarity are common

Short panels are common: many panel data sets do not cover the full
lifetime of the sampled firm, individual, or product.

Nonstationarities arise naturally: in the human life cycle through
aging, and the general equilibrium effects of evolving demographics;
in industries because of innovation and growth; and in marketing
through the diffusion of new products and over the product life cycle.

These features pose serious challenges to inference.

Yet most applied work in this area assumes the data generating
process is stationary, or impose other strong restrictions in estimation.
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Related Literature
Background

Our analysis draws extensively upon previously published work:

Rust’s (1987) conditional independence assumption limiting the role of
unobserved heterogeneity;
Hotz and Millers’(1993) inversion theorem, relating conditional choice
probabilities to differences in continuation values;
observational equivalence highlighted in Rust (1994) linking payoffs
occurring at different times;
the identification theorem of Magnac and Thesmar (2001) in finite
horizon models, and Aguirregabiria’s (2005) extension to infinite
horizon stationary models;
the representation of utility payoffs in Arcidiacono and Miller (2011);
results on counterfactuals by Aguirregabiria (2005, 2010) and Norets
and Tang (2014) for stationary environments.
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Related Literature
Other work on identifying dynamic discrete choice models

There are also analyses identifying:

the distribution of unobserved variables (Kasahara and Shimotsu, 2009;
Aguirregabiria, 2010; Hu and Shum, 2012; Norets and Tang, 2014).
multi-agent models (Aguirregabiria and Mira, 2007; Bajari, Benkard
and Levin, 2007; Pakes, Ostrovsky and Berry, 2007; Pesendorfer and
Schmidt-Dengler, 2008; Bajari, Chernozhukov, Hong, and Nekepelov,
2009; Aguirregabiria and Suzuki, 2014; Aguirregabiria and Mira, 2015).
the discount factor, features of the disturbance distribution and
counterfactual policies (Heckman and Navarro, 2007; Aguirregabiria,
2010; Blevin, 2014; Norets and Tang, 2014; Bajari, Chu, Nekipelov,
and Park, 2016).

Making headway in these directions requires assumptions over and
above the standard framework we consider below.
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Introductory Example
A model of health

The following two-period, two-choice example illustrates the main
results in a simple context.

Consider a two period model, T = 2, of the decision to smoke,
d2t = 1, or not, d1t = 1

The state variable is: healthy, x = 1, or sick, x = 2.

Individuals begin healthy and remain so if they do not smoke in
period one.

If an individual smokes in period one the probability of falling sick in
the second period is π.

The disturbances are distributed Type 1 Extreme Value.

The true value of the systematic component from not smoking is 0
when healthy and c when sick.

That is u1t (1) = 0 and u1t (2) = c for t ∈ {1, 2}.
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Introductory Example
Lacking knowledge about payoffs from outside the data

First suppose the econometrician does not know the true payoff from
either action.

Instead he normalizes the flow payoff in all periods to 0 for not
smoking, regardless of the individual’s health state.

That is u∗1t (x) = 0 for x ∈ {1, 2} and t ∈ {1, 2}. Then from (8) in
Theorem 1 and (2) below:

u∗21(1)− u∗11(1) = u21(1)− u11(1) + βπc (1)

Equation (1) illustrates a general property.

Differences relative to the normalized action are not identified, in this
case because c is not identified.
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Introductory Example
Long versus short panels

In a long panel data is collected on both periods.

If the true payoffs from not smoking are known then the remaining
utility parameters are identified.

For example, applying (6) in Theorem 2 below:

u21(1) = ln p21(1)− ln p11(1) + βπ [ln p12(2)− ln p12(1)− c ] (2)

In a short panel where there is only data on the first period, the
parameters are not identified even if value of not smoking is known, as
is evident from (2) which is constructed using CCPs for both periods.
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Introductory Example
Counterfactual regime temporarily affecting payoffs

Next consider a counterfactual regime that subsidizes sick people with
a payment of ∆.
This regime change does not affect second period choices.

Applying Theorem 4 and simplifying:

p̃11 (1) =
p11(1)

p11(1) + ln [1− p11(1)] exp (β∆π)

This formula illustrates the basic idea that only CCPs used in the
current regime are necessary to compute a counterfactual that has no
effects on choices in periods beyond the end of the panel

Consequently a short panel suffi ces to compute this counterfactual.
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Introductory Example
Counterfactual regime temporarily affecting payoffs in a long panel

Now consider a new regime changing the probability of falling sick,
conditional on smoking, from π to π̃; this change has no effect on
second period choices either.

Forming analogous expressions to (2) and (1) for the counterfactual
regime, we substitute out u21(1) and u∗21(1) to obtain the odds ratios:

p̃∗21(1)
p̃∗11(1)

=
p21(1)
p11(1)

×
[
p12(1)
p12(2)

]β(π−π̃)

=
p̃21(1)
p̃11(1)

exp [β (π − π̃) c ]

The ratio of the nonsmoking probabilities for the two periods differ
between the normalization and the true payoffs by the factor
exp [β (π − π̃) c ].

Using an incorrect normalization leads to incorrect predictions of
counterfactual choice probabilities induced by changes in transition
probabilities.
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Introductory Example
Counterfactual regime temporarily affecting payoffs in a short panel

Now suppose the econometrician knows the true values of u1t (x) for
each (t, x), but data is only available on the first period smoking
decisions.

Hence the CCPs for the second period in the current regime, are not
identified.

The counterfactual CCPs in the new regime cannot be recovered even
when the new regime only changes the first period transitions on the
state variables because p12(x) is not identified.
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A Class of Dynamic Discrete Choice Markov Models
Discrete time and finite choice sets

1 Let T ∈ {1, 2, . . .} with T ≤ ∞ denote the horizon of the
optimization problem and t ∈ {1, . . . ,T} denote the time period.

2 Each period the individual chooses amongst J mutually exclusive
actions.

3 Let dt ≡ (d1t , . . . , dJt ) where djt = 1 if action j ∈ {1, . . . , J} is taken
at time t and djt = 0 if action j is not taken at t.

4 xt ∈ {1, . . . ,X} for some finite positive integer X for each t.
5 εt ≡ (ε1t , . . . , εJt ) where εjt ∈ < for all (j , t) .
6 The joint mixed density function for the state in period t + 1
conditional on (xt , εt ), denoted by gt ,x ,ε (xt+1, εt+1 |xt , εt ), satisfies
the conditional independence assumption:

gt ,j ,x ,ε (xt+1, εt+1 |xt , εt ) = gt+1 (εt+1|xt+1) fjt (xt+1|xt )

where gt (εt |xt ) is a conditional density for the disturbances, and
fjt (xt+1|x) is a transition probability for x conditional on (j , t).
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A Class of Dynamic Discrete Choice Markov Models
Bounded additively separable preferences

Denote the discount factor by β ∈ (0, 1) and the current payoff from
taking action j at t given (xt , εt ) by ujt (xt ) + εjt .

To ensure a transversality condition is satisfied, assume {ujt (x)}Tt=1 is
a bounded sequence for each (j , x) ∈ {1, . . . , J} × {1, . . . ,X}, and
so is: {∫

max {|ε1t | , . . . , |εJt |} gt (εt |xt ) dεt

}T
t=1

At the beginning of each period t the agent observes the realization
(xt , εt ) chooses dt to sequentially maximize:

E
{
∑T

τ=t ∑
J
j=1 βτ−1djτ [ujτ(xτ) + εjτ] |xt , εt

}
(3)

where the expectation is taken over future realized values
xt+1, . . . , xT and εt+1, . . . , εT conditional on (xt , εt ).
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Identifying the Primitives
Identifying assumptions and data generating process

The optimization model is fully characterized by the time horizon, the
utility flows, the discount factor, the transition matrix of the observed
state variables, and the distribution of the unobserved variables,
summarized with the notation (T , β, f , g , u) .

The data comprise observations for a real or synthetic panel on the
observed part of the state variable, xt , and decision outcomes, dt .

In our analysis, let S ≤ T denote the last date for which data is
available (for a real or synthetic cohort).

Following most of the empirical work in this area we consider
identification when (T , β, f , g) are assumed to be known.

Thus the goal is to identify u from (xt , dt ) when (T , β, f , g) is known.
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Identifying the Primitives
Observational Equivalence

It is common knowledge that u is only identified relative to one choice
per period for each state.

Can we say more than that?

For each (x , t) let l (x , t) ∈ {1, . . . , J} denote any arbitrarily defined
normalizing action and ct (x) ∈ < its associated benchmark flow
utility, meaning u∗l(x ,t),t (x) ≡ ct (x).

Assume {ct (x)}Tt=1 is bounded for each x ∈ {1, . . . ,X}.
Let κ∗τ(xτ+1|xt , j) denote the probability distribution of xτ+1, given a
state of xt taking action j at t, and then repeatedly taking the
normalized action from period t + 1 through to period τ.

Thus κ∗t (xt+1|xt , j) ≡ fjt (xt+1|xt ) and for τ ∈ {t + 1, . . . ,T}:

κ∗τ(xτ+1|xt , j) ≡∑X
x=1 fl(x ,τ),τ(xτ+1|x)κ∗τ−1(x |xt , j) (4)
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Theorem

For each R ∈ {1, 2, . . .}, define for all x ∈ {1, . . . ,X}, j ∈ {1, . . . , J} and
t ∈ {1, . . . ,R}:

u∗jR (x) ≡ ujR (x) + cR (x)− ul(x ,R ),R (x) (5)

u∗jt (x) ≡ ujt (x) + ct (x)− ul(x ,t),t (x) (6)

+ lim
R→T

R

∑
τ=t+1

X

∑
x ′=1

βτ−t
{ [

cτ(x ′)− ul(x ,τ),τ(x ′)
]
×[

κ∗τ−1(x
′|xt , l(x , t))− κ∗τ−1(x

′|xt , j)
] }

The model defined by denoted by (T , β, f , g , u∗), is observationally
equivalent to (T , β, f , g , u). Conversely suppose (T , β, f , g , u∗) is
observationally equivalent to (T , β, f , g , u). For each date and state select
any action l (x , t) ∈ {1, . . . , J} with payoff u∗l(x ,t),t (x) ≡ ct (x) ∈ <,
where {ct (x)}Tt=1 is bounded for each x ∈ {1, . . . ,X}. Then (5) and (6)
hold for all (t, x , j).
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Corollary

Suppose ujt (x) = uj (x) and let uj ≡ (uj (1), . . . , uj (X ))
′. Similarly

suppose fjt (xt+1|xt ) = fj (xt+1|xt ) for all t ∈ {1, 2, . . .}. Denote by l (x)
the normalizing action for that state, with true payoff vector

ul =
(
ul(1)(1), . . . , ul(X )(X )

)′
, and assume c (x) ≡ (c(1), . . . , c(X ))′ is

bounded for each x ∈ {1, 2, . . .}. Then (6) reduces to:

u∗j = uj + [I − βFj ] [I − βFl ]
−1 (c − ul ) (7)

where u∗j ≡
(
u∗j (1), . . . , u∗j (X )

)′
, the X dimensional identity matrix is

denoted by I , and:

Fj ≡

 fj (1|1) . . . fj (X |1)
...

. . .
...

fj (1|X ) . . . fj (X |X )

 , Fl ≡

 fl(1)(1|1) . . . fl(1)(X |1)
...

. . .
...

fl(X )(1|X ) . . . fl(X )(X |X )


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Identifying the Primitives
Observational Equivalence

A common normalization is to let l (x , τ) = 1 and ct (x) = 0 for all
(t, x), normalizing the payoff from the first choice to zero by defining
u∗1t (x) ≡ 0, and interpreting the payoffs for other actions as net of, or
relative to, the current payoff for the first choice.
The theorem shows that with the important exception of the static
model (when T = 1), this interpretation is misleading.
Define κτ(xτ+1|xt , j) by setting fl(x ,τ),τ(xτ+1|x) = f1τ(xτ+1|x) in (4),
if T < ∞ then (5) and (6) simplify to:

u∗jT (x) = ujT (x)− u1T (x)
and:

u∗jt (x) = ujt (x)− u1t (x)

−
T

∑
τ=t+1

X

∑
xτ=1

βτ−tu1τ(xτ) [κτ−1(xτ|xt , 1)− κτ−1(xτ|xt , j)]
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Identifying the Primitives
Identification off long panels

Theorem

For all j , t, and x:

ujt (x) = u1t (x) + ψ1t (x)− ψjt (x) (8)

+
T

∑
τ=t+1

X

∑
xτ=1

βτ−t
{
[u1τ(xτ) + ψ1t (xτ)]×
[κτ−1(xτ|x , 1)− κτ−1(xτ|x , j)]

}

In stationary models, define Ψj ≡
[
ψj (1) . . . ψj (X )

]′
, and for all j :

uj = Ψ1 −Ψj − u1 + β (F1 − Fj ) [I − βF1]
−1 (Ψ1 + u1) (9)

If (T , β, f , g) is known, and if a payoff, say the first, is also known for
every state and time, then u is identified.
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Identifying the Primitives
Proving the theorem

From lecture 6 we specialize the mixed decision rule to taking the first
action to obtain

vjt (x) = ujt (x)

+
T

∑
τ=t+1

X

∑
xτ=1

βτ−t [u1τ(xτ) + ψ1τ (xτ)] κτ−1(xτ|x , j)

Subtract from the expression above the corresponding expression for
v1t (xt ) yielding:

vjt (x)− ujt (x)− [v1t (x)− u1t (x)]
= ψ1t (x)− ψjt (x)− ujt (x) + u1t (x)

=
T

∑
τ=t+1

X

∑
xτ=1

βτ−t
{
[u1τ(xτ) + ψ1t (xτ)]×
[κτ−1(xτ|x , 1)− κτ−1(xτ|x , j)]

}
The theorem follows from rearrangement.
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Identifying the Primitives
Asymptotic effi ciency

Everything on the right hand side of both (8) and (9) is known.

There are as many equations as unknowns, so u is exactly identified.

These equations therefore yield asymptotically effi cient estimators of
the unrestricted utility flows.

They are defined by substituting sample analogues for the CCPs into
the mappings that represent the utility flows.

Asymptotic precision can only be increased by exploiting information
outside the data set about true restrictions on the utility flows

False restrictions, such as adopting convenient functional forms for
the payoffs, typically create misspecifications.
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Identifying the Primitives
Lack of identification off short panels

Alternatively suppose the sampling period, S , falls short of the time
horizon T .
Then choices and state transitions are not observed after period S .
Rather than express ujt (x) relative to the known payoff for first
choice for the full horizon as in (8) , we express ujt relative to the
known u0t until period S and then use the value function at S + 1.

Corollary

For all j , t, and x:

ujt (x) = u1t (x) + ψ1t (x)− ψjt (x) (10)

+∑S
τ=t+1 ∑X

xτ=1
βτ−t

{
[u1τ(xτ) + ψ1t (xτ)]×
[κτ−1(xτ|x , 1)− κτ−1(xτ|x , j)]

}
+∑X

xS+1=1
βS−tVS+1(xS+1)] [κ(xS+1|x , 1)− κ(xS+1|x , j)]
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Identifying the Primitives
Lack of identification off short panels

The last expression in (10) gives the underidentification result.

Since the choice probabilities and state transition matrices are
identified from the data up to S , and ujt (xt ) is a linear mapping of
VS+1(x), the utility flows would be exactly identified if VS+1(x) was
known.

However VS+1(x) is endogenous and depends on CCPs that occur
after the sample ends.

In general the primitives are not identified off a short panel without
imposing X further restrictions.
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Identifying the Primitives
Single action finite dependence defined

In one specialization, however, some of the primitives can be identified
off short panels without resorting to further restrictions on the payoffs.

Single action ρ-dependence holds for an action, again say the first, if
for some t < T − ρ and for all j :

κρ−1(xt+ρ|xt , 1) = κρ−1(xt+ρ|xt , j) (11)

More specialized than finite dependence (Arcidiacono and Miller
2011, 2015), single action finite dependence includes:

terminal choices . . . irreversible sterilization (Hotz and Miller, 1993);
firm exit (Aguirregabiria and Mira, 2007; Pakes, Ostrovsky, and Berry,
2007); retirement (Gayle, Golan and Miller, 2015).
renewal choices . . . job turnover (Miller, 1984); replacing a bus engine
(Rust, 1987).
multiperiod renewal . . . capital depletion (Altug and Miller, 1998).
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Identifying the Primitives
Single action finite dependence and short panels

Appealing to the corollary above it now follows that for all t < S − ρ:

ujt (xt ) = u1t (x) + ψ1t (x)− ψjt (x)

+
t+ρ

∑
τ=t+1

X

∑
xτ=1

βτ−t
{
[u1τ(xτ) + ψ1t (xτ)]×
[κτ−1(xτ|x , 1)− κτ−1(xτ|x , j)]

}
Intuitively κτ−1(xτ|xt , 1) and κτ−1(xτ|xt , j), the sequence of state
probabilities from following the two paths (1, 1, 1, . . .) and
(j , 1, 1, . . .) respectively, merge after ρ periods, obliterating terms
occurring after t + ρ.

Thus if the payoffs for the choices that establish single action finite
dependence are known, then identification of the primitives up until
period S − ρ are identified.
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Counterfactual Policy Innovations
Comparing long with short panels

A rationale for estimating structural models is policy invariance.

Structural models yield robust predictions about the effects of
changes in the primitives on equilibrium in different regimes.

Long panels, but not short panels, embody the future within the past
through an ergodicity assumption.

So long, but not short, panels are amenable to predicting the future.

Models estimated off short panels can be used to reconstruct
counterfactual histories.

Whether a panel is long or short is determined by the data generating
process of the underlying model.

Our analysis highlights a trade-off between committing specification
errors by treating data as a long panel, or by accepting the limitations
that accompany nonstationary short panels.
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Counterfactual Policy Innovations
Limiting the scope of counterfactuals addressed with short panels

We limit our analysis to temporary policy innovations that expire
before the sample ends at S .

Useful policy advice can be gleaned from short panels that do not
sample many periods beyond the phase of interest:

clinical trials
public policy experiments
early child development
education choices
medical innovations curing disease
venture capital funding.
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Counterfactual Policy Innovations
Notation for changing payoffs and transitions

Denote by:

ujt (x) the true payoffs in the current regime
ũjt (x) the true payoffs in the counterfactual regime
∆jt (x) ≡ ũjt (x)− ujt (x) the payoff innovation
u∗jt (x) an observationally equivalent normalization to ujt (x)
ũ∗jt (x) an observationally equivalent normalization to u

∗
jt (x).

Similarly denote by:

fjt (x ′|x) the transition in the current regime
f̃jt (x ′|x) the transition in the counterfactual regime
Λjt (x ′|x) ≡ f̃jt (x ′|x)− fjt (x ′|x) a transition innovation.
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Counterfactual Policy Innovations
Back to fundamentals

Recall defining Q−1t (p, x) as the inverse of
Qt (δ, x) ≡ (Q1t (δ, x) , . . .QJ−1,t (δ, x))

′ where:

Qjt (δ, x) ≡
∞∫
−∞

Gjt (εj + δj − δ1, . . . , εj , . . . , εj + δj |x ) dεj

With this notation we identified ψit (x) ≡ Vt (x)− vit (x)

=
J

∑
j=1

{
pjt (x) [vjt (x)− vit (x)] +

∫
εjtdojt (xt , εt ) gt (εt |x ) dεt

}

=
J

∑
j=1
pjt (x)

[
Q−1jt [pt (x), x ]−Q−1it [pt (x), x ]

]
+

J

∑
j=1

∫ J

∏
k=1

1
{

εkt − εjt ≤
Q−1jt [pt (x), x ]−Q−1kt [pt (x), x ]

}
εjtgt (εt |x ) dεt
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Counterfactual Policy Innovations
An extra piece of notation

Now let p̃t (x) is the CCP associated d̃ot (x , εt )
For ε ≡ (ε1, . . . , εJ ) and p ≡ (p1, . . . , pJ ) we now define:

Υit (p, x) ≡
J

∑
j=1
pj
[
Q−1jt (p, x)−Q−1it (p, x)

]
+

J

∑
j=1

∫ J

∏
k=1

1
{

εk − εj ≤
Q−1jt (p, x)−Q−1kt (p, x)

}
εjdGt (ε |x )

Note that ψjt (x) = Υjt [pt (x) , x ] for all (j , t, x).
Moreover writing Ṽt (x) and ṽjt (x) respectively as the exante and
conditional value functions associated with the counterfactual regime,
it follows that:

ψ̃jt (x) ≡ Υjt [p̃t (x) , x ] = Ṽt (x)− ṽjt (x)

From the definition of Q−1t (p, x) it follows that if p̃t (x) is identified,
then Υjt [p̃t (x) , x ] and hence ψ̃jt (x) is identified when G is known.
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Identifying the Primitives
Temporary counterfactuals involving payoffs are identified off short panels

Theorem

Supposing ∆jt (x) = 0 for all t ≥ S then p̃jS (x) = pjS (x) and for all
t < S:

p̃jt (x) =
∫ J

∏
k=1

1
{

εkt − εjt ≤
ψ̃jt (x)− ψ̃kt (x)

}
dGt (εt |x )

where:

ψ̃jt (x)− ψ̃kt (x) = ψjt (x)− ψkt (x) + ∆jt (x)− ∆kt (x)

+
S

∑
τ=t+1

X

∑
xτ=1

βτ−t
{ [

∆1τ(xτ) + ψ̃1τ(xτ)− ψ1τ(xτ)
]

× [κτ−1(xτ|x , j)− κτ−1(xτ|x , k)]

}
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Counterfactual Policy Innovations
Computing counterfactual state transitions

Identifying counterfactual CCPs that result from changes in the state
transitions requires more information, because in this case:

p̃jt (x) = (12)∫ J

∏
k=1

1


εkt − εjt + ukt (x)− ujt (x)

≤
T
∑

τ=t+1

X
∑
xτ=1

βτ−t
{ [

ψ̃1τ(xτ) + u1τ(xτ)
]
×

[κ̃τ−1(xτ|x , k)− κ̃τ−1(xτ|xt , j)]

}  dGt (εt |x )
where κ̃τ−1(xτ|x , k)is defined analogously to κτ−1(xτ|x , k):

by replacing fj ,t+1(x ′|x) with f̃j ,t+1(x ′|x)
and then repeating the first action.
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Counterfactual Policy Innovations
Identifying state transitions in long panels

The presence of the u1τ(xτ) terms show that they cannot be derived
without knowing the true systematic payoff for one of the choices,
regardless of the sample length.

Suppose u1t (xt ) is known for all t.

This extra knowledge identifies ujt (x) for all (j , t, x) in a long panel.

Then we could recursively recover p̃jt (x) from:

p̃T (x) = pT (x)
this implies ψ̃1T (xT ) = Ψ1T [pT (x) , x ]
use formula above to recover p̃T−1 (x)
successively substitute into ψ̃1s (xτ) = Ψ1s [p̃s (x) , x ] for
s ∈ {τ + 1, . . . ,T}.
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Counterfactual Policy Innovations
Counterfactual state transitions in short panels

This argument extends to temporary changes in state transitions
when single action ρ-dependence holds.

In this special case ujt (x) is identified for all (j , x) and t < S − ρ.

Since κ̃τ−1(xτ|x , k) = κ̃τ−1(xτ|xt , j), the recursive procedure
described above applies.

In general the case of short panels is more problematic.

Knowing the true systematic payoff for one of the choices is generally
not suffi cient to identify the effects of even a temporary innovation.

Note that pτ(xτ) is not identified for τ > S .

Hence neither is ψ1τ(xτ) = Ψ1τ [pτ (x) , x ].

From (12) it now follows that p̃jt (x) is not identified for any t.

Intuitively the continuation value at S is unknown even a primitive
flow utility is known.
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Conclusion
Identifying the primitives

Flow payoffs are exactly identified off long panels from the CCPs
when the researcher knows the payoffs for one of the choices, the
discount factor, and the distribution of the unobservables.

These assumptions are not suffi cient to identify the remaining
parameters off nonstationary short panels.

In contrast to long panels, knowing the flow payoff for one of the
actions over the course of the sample period is not generally enough
to restore identification of the model primitives in short panels.

An important exception is the special case of single action finite
dependence when the payoff from that action is known.

Loosely speaking this is because behavior observed during a short
panel is not solely attributable to payoffs that occur during the panel,
but partially reflects payoffs that occur after the panel ends.
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Conclusion
Identifying counterfactuals

Long panels, but not short, can be used to predict the future.

Short panels can however be used to construct counterfactual
histories.

If none of the payoffs to any the actions are known, the effects of
counterfactual temporary policy changes are identified in short panels
if the policy change only affects the flow payoffs, a result that mimics
the long panel analogue.

Predictions from counterfactuals affecting state transitions can only
be identified off long panels if one choice specific payoff for each state
is known.

This assumption is not suffi cient for identification off short panels
even if the counterfactual is temporary except in the special case of
single action finite dependence when the payoff from that action is
known.
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Conclusion
A summary

The following table summarizes our results on identifying u when
(T , β, f , g) are known:

Identification primitives
counterfactual

payoffs
counterfactual
transitions

long panel with one
known payoff per state

Y Y Y

long panel lacking
a known payoff

N Y N

short panel with one
known payoff per state

N Y N

short panel lacking
a known payoff

N Y N
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Conclusion
One final speculative remark

Finally, the case for estimating utility functions purely as a vehicle for
making counterfactual predictions is not compelling unless the
researcher has reason to impose restrictions on the utility functions
because of knowledge outside the data.

To compute behavior induced by changing payoffs off panels either
short or long, it is not necessary to know the values of a choice
specific payoff, but it is a requirement for estimating the remaining
utility parameters

To compute behavior induced by changing the transition function off
long panels and short panels with the single action finite dependence
property, aside from the CCPs, only data from outside the sample on
the true value of a choice-specific payoff is necessary.
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