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Reviewing Conditional Independence
State variables and transitions

Each period t until T , for T ≤ ∞, an individual chooses among J
mutually exclusive actions.

For each action j ∈ {1, . . . , J} and period t ∈ {1, . . . ,T} define:

djt =
{
1 if action j taken at period t
0 if not

If action j is taken at time t, the probability of xt+1 occurring in
period t + 1 is denoted by fjt (xt+1|xt ).
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Reviewing Conditional Independence
Preferences

Suppose εt ≡ (ε1t , . . . , εJt ) is revealed at the beginning of the period
t, has continuous support and is iid with density function gt (ε |xt ).
The individual’s current period payoff from choosing j at time t is:

ujt (xt ) + εjt

The individual chooses dt ≡ (d1t , . . . , dJt ) to sequentially maximize:

E

{
T

∑
t=1

J

∑
j=1

βt−1djt [ujt (xt ) + εjt ]

}

where at each period t the expectation is taken over the future values
of xt+1, . . . , xT and εt+1, . . . , εT .

Miller (Structural Econometrics) Discrete Choice 6 September 2017 3 / 20



Reviewing Conditional Independence
Optimization

Denote the optimal decision rule at t as dot (xt , εt ), with j
th element

dojt (xt , εt ) and define:

Vt (xt ) ≡ E
{

T

∑
τ=t

J

∑
j=1

βτ−t−1dojτ (xτ, ετ) (ujτ(xτ) + εjτ)

}

The conditional value function, vjt (xt ), is defined as:

vjt (xt ) = ujt (xt ) + β
X

∑
x=1

Vt+1(x)fjt (x |xt )

Integrating dojt (xt , ε) over ε ≡ (ε1, . . . , εJ ):

pjt (xt ) ≡ E
[
dojt (xt , ε) |xt

]
=
∫
dojt (xt , ε) gt (ε |xt ) dε
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Inversion
Differences in conditional valuation functions

The starting point for our analysis is to define differences in the
conditional valuation functions as:

∆vjkt (x) ≡ vjt (x)− vkt (x)

Although there are J (J − 1) differences all but (J − 1) are linear
combinations of the (J − 1) basis functions.
For example setting the basis functions as:

∆vjt (x) ≡ vjt (x)− vJt (x)

then clearly:
∆vjkt (x) = ∆vjt (x)− ∆vkt (x)

Without loss of generality we focus on this particular basis function.
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Inversion
Each CCP is a mapping of differences in the conditional valuation functions

Using the definition of ∆vjt (x):

pjt (x) ≡
∫
dojt (x , ε) gt (ε |x ) dε

=
∫
I {εk ≤ εj + ∆vjt (x)− ∆vkt (x)∀ k 6= j} gt (ε |x ) dε

=

εj+∆vjt (x )−∆v1t (x )∫
−∞

. . .

εj+∆vjt (x )−∆vJ−1,t (x )∫
−∞

εj+∆vjt (x )∫
−∞

gt (ε |x ) dε

Noting gt (ε |x ) ≡ ∂JGt (ε |x )
/

∂ε1, . . . , ∂εJ , integrate over
(ε1, . . . , , εj−1, εj+1 . . . , εJ ).
Denoting Gjt (ε |x ) ≡ ∂Gt (ε |x )

/
∂εj , yields:

pjt (x) =

∞∫
−∞

Gjt

(
εj + ∆vjt (x)− ∆v1t (x), . . .

. . . , εj , . . . , εj + ∆vjt (x)
|x
)
dεj
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Inversion
There are as many CCPs as there are conditional valuation functions

For any vector J − 1 dimensional vector δ ≡ (δ1, . . . , δJ−1) define:

Qjt (δ, x) ≡
∞∫
−∞

Gjt (εj + δj − δ1, . . . , εj , . . . , εj + δj |x ) dεj

We interpret Qjt (δ, x) as the probability taking action j in a static
random utility model (RUM) where the payoffs are δj + εj and the
probability distribution of disturbances is given by Gt (ε |x ).
It follows from the definition of Qjt (δ, x) that:

0 ≤ Qjt (δ, x) ≤ 1 for all (j , t, δ, x) and
J−1
∑
j=1

Qjt (δ, x) ≤ 1

In particular the previous slide implies that for any given (j , t, x):

pjt (x) =

∞∫
−∞

Gjt

(
εj + ∆vjt (x)− ∆v1t (x),
. . . , εj , . . . , εj + ∆vjt (x)

|x
)
dεj ≡ Qjt (∆vt (x), x)
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Inversion
Proposition 1 of Hotz and Miller (1993)

Theorem (Inversion)

For each (t, δ, x) define:

Qt (δ, x) ≡ (Q1t (δ, x) , . . .QJ−1,t (δ, x))
′

Then the vector function Qt (δ, x) is invertible in δ for each (t, x).

Note that pJt (x) = QJt (∆vt , x) is a linear combination of the other
equations in the system because ∑J

k=1 pk = 1.
Let p ≡ (p1, . . . , pJ−1) where 0 ≤ pj ≤ 1 for all j ∈ {1, . . . , J − 1}
and ∑J−1

j=1 pj ≤ 1. Denote the inverse of Qjt (∆vt , x) by Q−1jt (p, x) .
The inversion theorem implies: ∆v1t (x)

...
∆vJ−1,t (x)

 =
 Q−11t [pt (x), x ]

...
Q−1J−1,t [pt (x), x ]


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Inversion
Using the inversion theorem

In finessing optimization and integration by exploiting conditional
independence, how far can the three applications described in the
previous two lectures be extended?

We use the Inversion Theorem to:
1 provide empirically tractable representations of the conditional value
functions.

2 analyze identification in dynamic discrete choice models.
3 provide convenient parametric forms for the density of εt that
generalize the Type 1 Extreme Value distribution.

4 generalize the renewal and terminal state properties exploited in the
first two examples, by obtaining restrictions on the state variable
transitions used to implement CCP estimators.

5 introduce new methods for incorporating unobserved state variables.
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Corollaries of the Inversion Theorem
Identifying the policy function

From the definition of the optimal decision rule, and then appealing
to the inversion theorem:

dojt (xt , εt ) = ∏J
k=1 1 {εkt − εjt ≤ vjt (x)− vkt (x)}

= ∏J
k=1 1

{
εkt − εjt ≤

vjt (x)− vJt (xt )
− [vkt (x)− vJt (xt )]

}
= ∏J

k=1 1 {εkt − εjt ≤ ∆vjt (x)− ∆vkt (x)}

= ∏J
k=1 1

{
εkt − εjt ≤ Q−1jt [pt (x), x ]−Q−1kt [pt (x), x ]

}
If Gt (ε |x ) is known and the data generating process (DGP) is
(xt , dt ), then pt (x) and hence dot (xt , εt ) are identified.

Miller (Structural Econometrics) Discrete Choice 6 September 2017 10 / 20



Corollaries of the Inversion Theorem
Definition of the conditional value function correction

Define:
ψjt (x) ≡ Vt (x)− vjt (x)

is the conditional value function correction. In stationary settings, we
drop the t subscript and write:

ψj (x) ≡ V (x)− vj (x)

Suppose that instead of taking the optimal action she committed to
taking action j instead. Then the expected lifetime utility would be:

vjt (xt ) + Et [εjt |xt ]

so committing to j before εt is revealed entails a loss of:

Vt (xt )− vjt (xt )− Et [εjt |xt ] = ψjt (x)− Et [εjt |xt ]

For example if Et [εt |xt ] = 0, the loss simplifies to ψjt (x).
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Corollaries of the Inversion Theorem
Identifying the conditional value function correction

From their respective definitions:

Vt (x)− vit (x)

=
J

∑
j=1

{
pjt (x) [vjt (x)− vit (x)] +

∫
εjtdojt (xt , εt ) gt (εt |x ) dεt

}
But:

vjt (x)− vit (x) = Q−1jt [pt (x), x ]−Q−1it [pt (x), x ]
and ∫

εjtdojt (x , εt ) g (εt |x ) dεt

=
∫ J

∏
k=1

1
{

εkt − εjt
≤ Q−1jt [pt (x), x ]−Q−1kt [pt (x), x ]

}
εjtgt (εt |x ) dεt

Therefore ψit (x) ≡ Vt (x)− vit (x) is identified if Gt (ε |x ) is known
and (xt , dt ) is the DGP.
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Conditional Valuation Function Representation
Telescoping one period forward

From its definition:

vjt (xt ) = ujt (xt ) + β
X

∑
x=1

Vt+1(x)fjt (xt+1|xt )

Substituting for Vt+1(xt+1) using conditional value function
correction we obtain for any k:

vjt (xt ) = ujt (xt ) + β
X

∑
x=1

[
vk ,t+1(x) + ψk ,t+1(x)

]
fjt (x |xt )

We could repeat this procedure ad infinitum, substituting in for
vk ,t+1(x) by using the definition for ψkt (x).
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Conditional Valuation Function Representation
Recursively defining the distribution of future state variables

To formalize this idea, consider a random sequence of weights from t
to T which begins with ωjt (xt , j) = 1.
For periods τ ∈ {t + 1, . . . ,T}, the choice sequence maps xτ and the
initial choice j into

ωτ(xτ, j) ≡ {ω1τ(xτ, j), . . . ,ωJτ(xτ, j)}
where ωkτ(xτ, j) may be negative or exceed one but:

J

∑
k=1

ωkτ(xτ, j) = 1

.
The weight of state xτ+1 conditional on following the choices in the
sequence is recursively defined by κt (xt+1|xt , j) ≡ fjt (xt+1|xt ) and for
τ = t + 1, . . . ,T :

κτ(xτ+1|xt , j) ≡
X

∑
xτ=1

J

∑
k=1

ωkτ (xτ, j) fkτ(xτ+1|xτ)κτ−1(xτ|xt , j)
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Framework
Theorem 1 of Arcidiacono and Miller (2011)

Theorem (Representation)

For any state xt ∈ {1, . . . ,X}, choice j ∈ {1, . . . , J} and weights
ωτ(xτ, j) defined for periods τ ∈ {t, . . . ,T}:

vjt (xt ) = ujt (xt )

+
T

∑
τ=t+1

J

∑
k=1

X

∑
x=1

βτ−t [ukτ(x) + ψk [pτ(x)]]ωkτ(x , j)κτ−1(x |xt , j)

The theorem yields an alternative expression for vjt (xt ) that dispenses
with recursive maximization.

Intuitively, the individuals have already solved their optimization
problem, so their decisions, as reflected in their CCPs, are informative
of their value functions.
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Extension to dynamic games
Applying the Representation Theorem

Both theorems apply to this multiagent setting with two critical
differences, and both are relevant for studying identification:

1 ujt (xt ) is a primitive in single agent optimization problems, but

u(i )jt (xt ) is a reduced form parameter found by integrating

U(i )jt

(
xt , d

(∼i )
t

)
over the joint probability distribution Pt

(
d (∼i )t |xt

)
.

2 fjt (xt+1 |xt ) is a primitive in single agent optimization problems, but
f (i )jt (xt+1 |xt ) depends on CCPs of the other players, Pt

(
d (∼i )t |xt

)
,

as well as the primitive Fjt
(
xt+1

∣∣∣xt , d (∼i )t

)
. It is easy to interpret

restrictions placed directly on fjt (xt+1 |xt ) but placing restrictions on
Fjt
(
xt+1

∣∣∣xt , d (∼i )t

)
complicates matters in dynamic games because of

the endogenous effects arising from Pt
(
d (∼i )t |xt

)
on f (i )jt (xt+1 |xt ).
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Generalized Extreme Values
Definition

Are there tractable distributions Gt (ε |x ) aside from the Type 1
Extreme Value?

To keep the approach operational we have to compute ψk (p) for at
least some k.

Suppose ε is drawn from the GEV distribution function:

G (ε1, ε2, . . . , εJ ) ≡ exp [−H (exp[−ε1], exp[−ε2], . . . , exp[−εJ ])]

where H (Y1,Y2, . . . ,YJ ) satisfies the following properties:
1 H (Y1,Y2, . . . ,YJ ) is nonnegative, real valued, and homogeneous of
degree one;

2 limH (Y1,Y2, . . . ,YJ )→ ∞ as Yj → ∞ for all j ∈ {1, . . . , J};
3 for any distinct (i1, i2, . . . , ir ) the cross derivative

∂H (Y1,Y2, . . . ,YJ ) /∂Yi1 ,Yi2 , . . . ,Yir is nonnegative for r odd and
nonpositive for r even.
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Generalized Extreme Values
Extended Nested Logit Distributions

Suppose G (ε) factors into two independent distributions, one a
nested logit, and the other any GEV distribution.

Let J denote the set of choices in the nest and denote the other
distribution by G0 (Y1,Y2, . . . ,YK ) let K denote the number of
choices that are outside the nest.

Then:

G (ε) ≡ G0 (ε1, . . . , εK ) exp

[
−
(

∑
j∈J

exp [−εj/σ]

)σ]

The correlation of the errors within the nest is given by σ ∈ [0, 1] and
errors within the nest are uncorrelated with errors outside the nest.
When σ = 1, the errors are uncorrelated within the nest, and when
σ = 0 they are perfectly correlated.
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Generalized Extreme Values
Lemma 2 of Arcidiacono and Miller (2011)

Define φj (Y ) as a mapping into the unit interval where

φj (Y ) = YjHj (Y1, . . . ,YJ )
/
H (Y1, . . . ,YJ )

Since Hj (Y1, . . . ,YJ ) and H (Y1, . . . ,YJ ) are homogeneous of
degree zero and one respectively, φj (Y ) is a probability, because

φj (Y ) ≥ 0 and ∑J
j=1 φj (Y ) = 1.

Lemma (GEV correction factor)
When εt is drawn from a GEV distribution, the inverse function of
φ(Y ) ≡ (φ2(Y ), . . . φJ (Y )) exists, which we now denote by φ−1(p), and:

ψj (p) = lnH
[
1, φ−12 (p), . . . , φ−1J (p)

]
− ln φ−1j (p) + γ
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Generalized Extreme Values
Correction factor for extended nested logit

Lemma
For the nested logit G (εt ) defined above:

ψj (p) = γ− σ ln(pj )− (1− σ) ln

(
∑
k∈J

pk

)

Note that ψj (p) only depends on the conditional choice probabilities
for choices that are in the nest: the expression is the same no matter
how many choices are outside the nest or how those choices are
correlated.

Hence, ψj (p) will only depend on pj ′ if εjt and εj ′t are correlated.
When σ = 1, εjt is independent of all other errors and ψj (p) only
depends on pj .
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