Robert A. Miller

Structural Econometrics

September 2017

A dynamic discrete choice model

- Each period $t \in \{1, 2, ..., T\}$ for $T \leq \infty$, an individual chooses among J mutually exclusive actions.
- Let d_{jt} equal one if action $j \in \{1, ..., J\}$ is taken at time t and zero otherwise:

$$d_{jt} \in \{0,1\}$$

$$\sum_{j=1}^{J} d_{jt} = 1$$

- Suppose that actions taken at time t can potentially depend on the state $z_t \in Z$.
- The current period payoff at time t from taking action j is $u_{jt}(z_t)$.
- Given choices (d_{1t}, \ldots, d_{Jt}) in each period $t \in \{1, 2, \ldots, T\}$ the individual's expected utility is:

$$E\left\{\sum_{t=1}^{I}\sum_{j=1}^{J}\beta^{t-1}d_{jt}u_{jt}(z_{t})\right\}$$

Value function and optimization

• Writing the optimal decision rule as $d_t^o(z) \equiv (d_{1t}^o(z_t), \ldots, d_{Jt}^o(z_t))$, and denoting the value function by $V_t(z_t)$, we obtained:

$$V_{t}(z_{t}) = \sum_{t=1}^{T} \sum_{j=1}^{J} d_{jt}^{o} u_{jt}(z_{t})$$

$$= \sum_{j=1}^{J} d_{jt}^{o} \left[u_{jt}(z_{t}) + \beta \sum_{z_{t+1}=1}^{Z} V_{t+1}(z_{t+1}) f_{jt}(z_{t+1} | z_{t}) \right]$$

• Let $v_{jt}(z_t)$ denote the flow payoff of action j plus the expected future utility of behaving optimally from period t+1 on:

$$v_{jt}(z_t) \equiv u_{jt}(z_t) + \beta \sum_{z_{t+1}=1}^{Z} V_{t+1}(z_{t+1}) f_{jt}(z_{t+1} | z_t)$$

Bellman's principle implies:

$$d_{jt}^{o}\left(z_{t}
ight)\equiv\prod_{k=1}^{K}I\left\{ v_{jt}(z_{t})\geq v_{kt}(z_{t})
ight\}$$

Estimation

• Partitioning the states $z_t \equiv (x_t, \varepsilon_t)$ into those which are observed, x_t , and those that are not, ε_t , indexing a given specification of $u_{jt}(z_t)$, $f_{jt}(z_{t+1}|z_t)$ and β by $\theta \in \Theta$, we showed the maximum likelihood estimator, $\theta_{ML} \in \Theta$ selects θ to maximize the joint probability of the observed occurrences:

$$\prod_{n=1}^{N} \int_{\varepsilon_{T}} \dots \int_{\varepsilon_{1}} \left[\begin{array}{c} \sum_{j=1}^{J} I\left\{d_{njT}=1\right\} d_{jT}^{o}\left(x_{nT}, \varepsilon_{T}\right) \times \\ \prod\limits_{t=1}^{T-1} H_{nt}\left(x_{n,t+1}, \varepsilon_{t+1} \left|x_{nt}, \varepsilon_{t}\right.\right) g\left(\varepsilon_{1} \left|x_{n1}\right.\right) \end{array} \right] d\varepsilon_{1} \dots d\varepsilon_{T}$$

where:

$$H_{nt}\left(x_{n,t+1}, \epsilon_{t+1} \mid x_{nt}, \epsilon_{t}\right) \equiv \sum_{j=1}^{J} I\left\{d_{njt} = 1\right\} d_{jt}^{o}\left(x_{nt}, \epsilon_{t}\right) f_{jt}\left(x_{n,t+1}, \epsilon_{t+1} \mid x_{nt}, \epsilon_{t}\right)$$

is the probability density of the pair $(x_{n,t+1}, \epsilon_{t+1})$ conditional on (x_{nt}, ϵ_t) when choices are optimal for θ , and $d_{njt} = 1$.

A computational challenge

- What are the computational challenges to enlarging the state space?
 - Computing the value function;
 - Solving for equilibrium in a multiplayer setting;
 - Integrating over unobserved heterogeneity.
- These challenges have led researchers to compromises on several dimensions:
 - Shrink large data set or use a small data set;
 - Yeep the dimension of the state space small;
 - Assume all choices and outcomes are observed;
 - Model unobserved states as a matter of computational convenience;
 - Onsider only one side of market to finesse equilibrium issues;
 - Adopt parameterizations based on convenient functional forms.

Separable Transitions in the Observed Variables

A simplification

• We could assume that for all (j, t, x_t, ϵ_t) the transition of the observed variables does not depend on the unobserved variables:

$$f_{jt}\left(x_{t+1}\left|x_{t},\epsilon_{t}\right.\right)=f_{jt}\left(x_{t+1}\left|x_{t}\right.\right)$$

• Since x_{t+1} conveys all the information of x_t for the purposes of forming probability distributions at t+1:

$$f_{jt}\left(x_{t+1}, \epsilon_{t+1} \mid x_t, \epsilon_t\right) \equiv g_{t+1}\left(\epsilon_{t+1} \mid x_{t+1}, x_t, \epsilon_t\right) f_{jt}\left(x_{t+1} \mid x_t, \epsilon_t\right)$$

$$\equiv g_{t+1}\left(\epsilon_{t+1} \mid x_{t+1}, \epsilon_t\right) f_{jt}\left(x_{t+1} \mid x_t\right)$$

 The ML estimator maximizes the same criterion function but $H_{nt}(x_{n t+1}, \epsilon_{t+1} | x_{nt}, \epsilon_t)$ simplifies to:

$$H_{nt}\left(x_{n,t+1}, \epsilon_{t+1} \mid x_{nt}, \epsilon_{t}\right) = \sum_{i=1}^{J} I\left\{d_{njt} = 1\right\} d_{jt}^{o}\left(x_{nt}, \epsilon_{t}\right) g_{t+1}\left(\epsilon_{t+1} \mid x_{n,t+1}, \epsilon_{t}\right) f_{jt}\left(x_{n,t+1} \mid x_{nt}\right)$$

Separable Transitions in the Observed Variables

Exploiting separability in estimation

- Note $f_{jt}(x_{t+1}|x_t)$ is identified for each (j, t) from the transitions.
- Instead of jointly estimating the parameters, we could use a two stage estimator to reduce computation costs:
 - Estimate $f_{jt}(x_{t+1}|x_t)$ with a cell estimator (for x finite), a nonparametric estimator, or a parametric function;
 - ② Define:

$$\widehat{H}_{nt}\left(x_{n,t+1}, \epsilon_{t+1} \mid x_{nt}, \epsilon_{t}; \theta\right) \equiv \sum_{j=1}^{J} I\left\{d_{njt} = 1\right\} d_{jt}^{o}\left(x_{nt}, \epsilon_{t}; \theta\right) g_{t+1}\left(\epsilon_{t+1} \mid x_{n,t+1}, \epsilon_{t}; \theta\right) \widehat{f}_{jt}\left(x_{n,t+1} \mid x_{n,t+1}, \epsilon_{t}; \theta\right) g_{t+1}\left(\epsilon_{t+1} \mid x_{n,t+1}, \epsilon_{t}; \theta\right) \widehat{f}_{jt}\left(x_{n,t+1} \mid x_{n,t+1}, \epsilon_{t}; \theta\right) g_{t+1}\left(\epsilon_{t+1} \mid x_{n,t+1}, \epsilon_{t}; \theta\right) \widehat{f}_{jt}\left(x_{n,t+1} \mid x_{n,t+1}, \epsilon_{t}; \theta\right) g_{t+1}\left(\epsilon_{t+1} \mid x_{n,t+1}, \epsilon_$$

$$\begin{split} \widehat{H}_{nt}\left(x_{n,t+1}, \epsilon_{t+1} \left| x_{nt}, \epsilon_{t}; \theta \right.\right) &\equiv \\ \int\limits_{j=1}^{J} \left[I\left\{d_{njt} = 1\right\} d_{jt}^{o}\left(x_{nt}, \epsilon_{t}; \theta\right) \right. \\ &\left. \times g_{t+1}\left(\epsilon_{t+1} \left| x_{n,t+1}, \epsilon_{t}; \theta\right.\right) \widehat{f}_{jt}\left(x_{n,t+1} \left| x_{nt}\right.\right) \right. \right] \end{split}$$

Select the remaining (preference) parameters to maximize:

 $\prod^{N} \int \prod^{l} \widehat{H}_{nt}(x_{n,t+1}, \epsilon_{t+1} | x_{nt}, \epsilon_{t}; \theta) g_{1}(\epsilon_{1} | x_{n1}; \theta) d\epsilon = 2$

Conditional independence defined

- Separable transitions do not, however, free us from:
 - 1 the curse of multiple integration;
 - numerically optimization to obtain the value function.
- Suppose in addition, that conditional on x_t the unobserved variable ϵ_{t+1} is are independent of ϵ_t .
- Conditional independence embodies both assumptions:

$$f_{jt}(x_{t+1}|x_{t}, \epsilon_{t}) = f_{jt}(x_{t+1}|x_{t})$$

$$g_{t+1}(\epsilon_{t+1}|x_{t+1}, \epsilon_{t}) = g_{t+1}(\epsilon_{t+1}|x_{t+1})$$

It implies:

$$f_{jt}(x_{t+1}, \epsilon_{t+1} | x_t, \epsilon_t) = f_{jt}(x_{t+1} | x_t) g_{t+1}(\epsilon_{t+1} | x_{t+1})$$

 Note that the model in Assignment 1 does not satisfy conditional independence, because posterior beliefs are unobserved state variables governed by a controlled markov process.

Simplifying expressions within the likelihood

• Conditional independence simplifies $H_{nt}(x_{n,t+1}, \epsilon_{t+1} | x_{nt}, \epsilon_t)$ to:

$$H_{nt}\left(x_{n,t+1}, \epsilon_{t+1} \mid x_{nt}, \epsilon_{t}\right) = \sum_{j=1}^{J} I\left\{d_{njt} = 1\right\} d_{jt}^{o}\left(x_{nt}, \epsilon_{t}\right) g_{t+1}\left(\epsilon_{t+1} \mid x_{n,t+1}\right) f_{jt}\left(x_{n,t+1} \mid x_{nt}\right)$$

Also note that:

$$\prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{nt}, \epsilon_{t} \right) f_{jt} \left(x_{n,t+1} | x_{nt} \right) \right\} = \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} f_{jt} \left(x_{n,t+1} | x_{nt} \right) \right\} \times \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{n,t+1} | x_{nt} \right) \right\} = \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{n,t+1} | x_{nt} \right) \right\} = \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{n,t+1} | x_{nt} \right) \right\} = \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{n,t+1} | x_{nt} \right) \right\} = \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{n,t+1} | x_{nt} \right) \right\} = \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{n,t+1} | x_{nt} \right) \right\} = \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{n,t+1} | x_{nt} \right) \right\} = \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{n,t+1} | x_{nt} \right) \right\} = \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{n,t+1} | x_{nt} \right) \right\} = \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{n,t+1} | x_{nt} \right) \right\} = \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{n,t+1} | x_{nt} \right) \right\} = \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{n,t+1} | x_{nt} \right) \right\} = \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{n,t+1} | x_{nt} \right) \right\} = \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{n,t+1} | x_{nt} \right) \right\} = \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{n,t+1} | x_{nt} \right) \right\} = \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{n,t+1} | x_{nt} \right) \right\} = \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left\{ x_{n,t+1} | x_{nt} \right\} d_{jt}^{o} \left\{ x_{n,t+1} | x_{nt} \right\} \right\} = \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left\{ x_{n,t+1} | x_{nt} \right\} d_{jt}^{o} \left\{ x_{n,t+1} | x_{n,t+1} \right\} d_{jt}^{o} \left\{ x_{n,t+1} | x_{n,t+1} | x_{n,t+1} \right\} d_{jt}^{o} \left\{ x_{n,t+1} | x_{n,t+1} | x_{n,t+1} | x_{n,t+1} \right\} d_{jt}^{o} \left\{ x_{n,t+1} | x_{n,t+1} | x_{n,t+1} | x_{n,t+1} | x_{n,t+1} | x_{$$

$$\prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{nt}, \epsilon_{t} \right) f_{jt} \left(x_{n,t+1} | x_{nt} \right) \right\}$$

$$= \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} f_{jt} \left(x_{n,t+1} | x_{nt} \right) \right\}$$

 $\prod^{T} \left\{ \sum_{i=1}^{J} \left\{ d_{nit} = 1 \right\} d_{it}^{o} \left(x_{nt}^{o}, \epsilon_{t}^{o} \right) \right\} \stackrel{\text{less the second states}}{=}$

Maximum likelihood under conditional independence

• Hence the contribution of $n \in \{1, ..., N\}$ to the likelihood is the product of:

$$\prod_{t=1}^{T-1}\sum_{j=1}^{J}I\left\{ d_{njt}=1
ight\} f_{jt}\left(x_{n,t+1}\leftert x_{nt}
ight)$$

and:

$$\int_{\epsilon_{T}} \dots \int_{\epsilon_{1}} \prod_{t=1}^{T-1} \sum_{j=1}^{J} I\left\{d_{njt}=1\right\} d_{jt}^{o}\left(\mathsf{x}_{nt}, \epsilon_{t}\right) \mathsf{g}_{t+1}\left(\epsilon_{t+1} \left|\mathsf{x}_{n,t+1}\right.\right) \mathsf{g}_{1}\left(\epsilon_{1} \left|\mathsf{x}_{n1}\right.\right) d\epsilon_{1} \dots$$

The second expression simplifies to:

$$\prod_{t=1}^{T} \left[\sum_{j=1}^{J} I\left\{d_{njt} = 1\right\} \int_{\epsilon_{t}} d_{jt}^{o}\left(x_{nt}, \epsilon_{t}\right) g_{t}\left(\epsilon_{t} \left| x_{nt}\right.\right) d\epsilon_{t} \right]$$

Conditional choice probabilities defined

• Under conditional independence, we define for each (t, x_t) the conditional choice probability (CCP) for action j as:

$$p_{jt}(x_t) \equiv \int_{\epsilon_t} d^o_{jt}(x_{nt}, \epsilon_t) g_t(\epsilon_t | x_{nt}) d\epsilon_t$$

$$= E \left[d^o_{jt}(x_t, \epsilon_t) | x_t \right]$$

$$= \int_{\epsilon_t} \prod_{k=1}^J I \left\{ v_{kt}(x_{nt}, \epsilon_t) \leq v_{jt}(x_{nt}, \epsilon_t) \right\} g_t(\epsilon_t | x_{nt}) d\epsilon_t$$

Using this notation, the likelihood can now be compactly expressed as:

$$egin{aligned} &\sum_{n=1}^{N} \sum_{t=1}^{T-1} \sum_{j=1}^{J} I\left\{d_{njt} = 1
ight\} \ln\left[f_{jt}\left(x_{n,t+1} \left| x_{nt}
ight)
ight] \ &+ \sum_{n=1}^{N} \sum_{t=1}^{T} \sum_{j=1}^{J} I\left\{d_{njt} = 1
ight\} \ln p_{jt}\left(x_{t}
ight) \end{aligned}$$

Reformulating the primitives

• Conditional independence implies that $v_{jt}(x_t, \epsilon_t)$ only depends on ϵ_t through $u_{jt}(x_t, \epsilon_t)$ because:

$$v_{jt}(x_t, \epsilon_t) \equiv u_{jt}(x_t, \epsilon_t) + \beta \int_{\epsilon_t+1} \sum_{x_{t+1}=1}^{X} V_{t+1}(x_{t+1}, \epsilon_{t+1}) f_{jt}(x_{t+1} | x_t) g_{t+1}(\epsilon_{t+1} | x_{t+1}) g_{t+1}(\epsilon_{t+1} | x_t) g_{t+1}(\epsilon_{t+1}$$

• Without further loss of generality we now define:

$$u_{jt}(x_t, \epsilon_t) \equiv E[u_{jt}(x_t, \epsilon_t) | x_t] + \epsilon_{jt}^* \equiv u_{jt}^*(x_t) + \epsilon_{jt}^*$$

• In this way we redefine the primitives by the preferences $u_{jt}^*(x_t)$, the observed variables transitions $f_{jt}(x_{t+1}|x_t)$, and the distribution of unobserved variables $g_t^*(\varepsilon_t^*|x_t)$ where $\varepsilon_t^* \equiv (\varepsilon_{1t}^*, \dots, \varepsilon_{Jt}^*)$.

Conditional value functions defined

 Given conditional independence, define the conditional valuation function as:

$$v_{jt}^{*}(x_{t}) = u_{jt}^{*}(x_{t}) + \beta \int_{\epsilon_{t}+1} \sum_{x_{t+1}=1}^{X} V_{t+1}^{*}(x_{t+1}, \epsilon_{t+1}^{*}) f_{jt}(x_{t+1} | x_{t}) g_{t+1}^{*}(\epsilon_{t+1}^{*} | x_{t+1})$$

• Thus $p_{jt}(x)$ is found by integrating over $(\epsilon_{1t}, \dots, \epsilon_{Jt})$ in the regions:

$$\epsilon_{kt}^* - \epsilon_{jt}^* \le v_{jt}^*(x_t) - v_{kt}^*(x_t)$$

hold for all $k \in \{1, ..., J\}$. That is $p_{jt}(x_t)$ can be rewritten:

$$\int_{\epsilon_{t}} \prod_{k=1}^{J} I\left\{v_{kt}(x_{nt}, \epsilon_{t}) \leq v_{jt}(x_{nt}, \epsilon_{t})\right\} g_{t}\left(\epsilon_{t} \mid x_{t}\right) d\epsilon_{t}$$

$$= \int_{\epsilon_{t}} \prod_{k=1}^{J} I\left\{\epsilon_{kt}^{*} - \epsilon_{jt}^{*} \leq v_{jt}^{*}(x_{nt}) - v_{kt}^{*}(x_{nt})\right\} g_{t}^{*}\left(\epsilon_{t}^{*} \mid x_{t}\right) d\epsilon_{t}^{*}$$

Connection with static models

- Suppose we only had data on the last period T, and wished to estimate the preferences determining choices in T.
- By definition this is a static problem in which $v_{iT}(z_T) \equiv u_{iT}(z_T)$.
- For example to the probability of observing the J^{th} choice is:

$$p_{JT}\left(z_{T}\right) \equiv \int_{-\infty}^{\epsilon_{JT} + u_{JT}\left(z_{T}\right)} \dots \int_{-\infty}^{\epsilon_{JT} + u_{JT}\left(z_{T}\right)} \int_{-\infty}^{\infty} g_{T}\left(\epsilon_{T} \mid x_{T}\right) d\epsilon_{T}$$

• The only essential difference between a estimating a static discrete choice model using ML and a estimating a dynamic model satisfying conditional independence using ML is that parametrizations of $v_{jt}(x_t)$ based on $u_{jt}(x_t)$ do not have a closed form, but must be computed numerically.