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A Recapitulation

A dynamic discrete choice model

e Each period t € {1,2,..., T} for T < oo, an individual chooses
among J mutually exclusive actions.

o Let djt equal one if action j € {1,...,J} is taken at time t and zero
otherwise:

di € {0,1}

J
j=1

@ Suppose that actions taken at time t can potentially depend on the
state z; € Z.

@ The current period payoff at time t from taking action j is uj(z).

e Given choices (di¢,...,dy) in each period t € {1,2,..., T} the
individual's expected utility is:

{Z Y B e zt>}

t=1j=
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A Recapitulation

Value function and optimization

o Writing the optimal decision rule as d? (z) = (d{,(z¢), ..., d%(z)),
and denoting the value function by V;(z:), we obtained:
T J
Vi(z:) = Z Zd ujt ()
t=1j=1

J
= ) di |ue(z) + B Z Ver1(ze41)fje (ze41 |2e)

Jj=1 zp41=1
o Let vjt(z:) denote the flow payoff of action j plus the expected future
utility of behaving optimally from period t + 1 on:

7
Vie(ze) = upe(ze) + B Y. Veri(zer1) i (ze1 |2e)

zp41=1

@ Bellman'’s principle implieS'

dj (z Hk Hvie(ze) = vie(2e) }
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A Recapitulation

Estimation

o Partitioning the states z; = (x;, €;) into those which are observed, x;,
and those that are not, €;, indexing a given specification of uj(z),
fit (z¢41|2:) and B by 6 € ©, we showed the maximum likelihood
estimator, 0y € O selects 6 to maximize the joint probability of the
observed occurrences:

Z, 1/{0'an 1} d7r (xaT,€7) X
d€1 ...d€T
= 1/€T / H Hpe (Xn t+1,€t+1 |Xnt. €t)g (61 ‘an)

where:

Hpe (Xn,t+1yet+1 ‘Xntvet) =

J

Z / {dnjt = 1} dﬁ (Xntx Gt) 6’t (Xn,t—i-l, €41 |Xntv €t)
j=1

is the probability density of the pair (xy 41, €r+1) conditional on
(Xnt, €:) when choices are optimal for 6, and d,; = 1.
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A Recapitulation

A computational challenge

@ What are the computational challenges to enlarging the state space?

© Computing the value function;
@ Solving for equilibrium in a multiplayer setting;
@ Integrating over unobserved heterogeneity.

@ These challenges have led researchers to compromises on several
dimensions:

@ Shrink large data set or use a small data set;

@ Keep the dimension of the state space small;

© Assume all choices and outcomes are observed;

@ Model unobserved states as a matter of computational convenience;
@ Consider only one side of market to finesse equilibrium issues;

@ Adopt parameterizations based on convenient functional forms.
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Separable Transitions in the Observed Variables

A simplification

e We could assume that for all (j, t, x;, €;) the transition of the
observed variables does not depend on the unobserved variables:

6‘1: (Xt+1 |Xt,€t) = Tt (Xt+1 |Xt)

@ Since x;+1 conveys all the information of x; for the purposes of
forming probability distributions at t + 1:

fit (Xt+1.€t+1 |Xt' €t) = 8t+1 (€t+1 |Xt+1rXt.€t) fit (Xt+1 ’Xty€t>
= 8t+1 (€t+1 ‘Xt+1, €t) fit (Xt+1 ‘Xt>

@ The ML estimator maximizes the same criterion function but
Hnt (Xn’t+1, €t+1 ’Xnt, et) S|mp||f|es to:

Hpt (Xn,t—i-lvet—i-l |Xntv€t) =

J
Z I {dnjs = 1} d (X, €t) gt+1 (€141 [Xn,e41, €¢ ) fit (Xn,t41 |Xar )
=1
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Separable Transitions in the Observed Variables

Exploiting separability in estimation

o Note fit (xt41 |x¢ ) is identifed for each (j, t) from the transitions.
@ Instead of jointly estimating the parameters, we could use a two stage
estimator to reduce computation costs:

@ Estimate fj (x¢41 |xt ) with a cell estimator (for x finite), a
nonparametrlc estimator, or a parametrlc function;
@ Define:

i:lnt (Xn,t+1, €¢+1 |Xnt, €1, 0) =

Z I {dnje = 1} d} (xnt, €¢:0) g1 (€x41 [Xn, 41, €1 0) Fie (Xp,e11 |x

Hnt (Xn,t+1v€t+1 |Xnt,€t;9) =
J [ {dnjt = 1} dﬁ (Xnt, €1:0)
=1 L xger1 (€rr [Xner1,€6:0) Fie (xo,eq1 |xar )
© Select the remaining (preference) parameters to maximize:
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Conditional Independence

Conditional independence defined

@ Separable transitions do not, however, free us from:

@ the curse of multiple integration;
@ numerically optimization to obtain the value function.

@ Suppose in addition, that conditional on x; the unobserved variable
€¢+1 is are independent of €;.

@ Conditional independence embodies both assumptions:
fit (Xe1 |Xe €)= Fi (Xeq1 [Xe)
8t+1 (€t+1 ‘Xt+1. €t) = & <€t+1 |Xt+1)

It implies:

fit (Xe41, €041 |Xe €0 ) = B (Xeq1 |Xe) g1 (€241 |Xeq1)

@ Note that the model in Assignment 1 does not satisfy conditional
independence, because posterior beliefs are unobserved state variables
governed by a controlled markov process.
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Conditional Independence

Simplifying expressions within the likelihood

e Conditional independence simplifies Hpt (Xp t+1, €1+1 | Xnt, €1 ) to:

Hpt (Xn,t+1x €t+1 |Xnty€t) =

J

Z / {dnjt = 1} dﬁ (Xnt. €t) 8t+1 (€t+1 |Xn,t+1) fjt (Xn,t+1 |Xnt)
j=1

@ Also note that:

[T {0  {ie = 132 (xnes€0) i G o) | =
T J T J
[T {Z I {dnjr = 1} fit (xn,t-41 \Xnt)} X Il {; I{dnjr =1} di (x

t=1 j=1

Hthl {ijl I{dnjr = 1} dj; (Xnt, €¢) fir (Xn,t41 |Xnt)}
- HtT:1 {Zj:l I {dnje = 1} fie (Xn,e41 \Xnt)}

4 S fd =1V d2 (s €
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Conditional Independence

Maximum likelihood under conditional independence

@ Hence the contribution of n € {1,..., N} to the likelihood is the

product of:
T-1

J
H 2 {dnjf = 1} fjt (Xn,t+1 ’Xnt)
t=1 j=1

and:

t=1 j=1

T-1 J
[ [ TT X 1 (i = 1 2 Gt €0) gt (€1 xnes1) 1 (€1 b ) des
€T €1

@ The second expression simplifies to:

H lz / {d",/t - 1}/ Xntvet 8t (Gt |Xnt) de;

t=1
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Conditional Independence

Conditional choice probabilities defined

@ Under conditional independence, we define for each (t, x;) the
conditional choice probability (CCP) for action j as:

Pjt (Xt) / Xnt €t 8t (et |Xnt) de;
E |:djt (Xt1€t> ’Xt]
= / l—[ / {th(Xntvet) < Vjt(Xntret)}gt (et ‘Xnt) de;
€t k=1
@ Using this notation, the likelihood can now be compactly expressed as:
N T-1
2 Z / {dnjt = 1} In [ <Xn t+1 ‘Xnt)]

n=1 t=1 j=1

N T J
+ 3 3 ) IH{dwe = 1 Inpje ()
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Conditional Independence

Reformulating the primitives

e Conditional independence implies that vj:(x¢, €;) only depends on €;
through uj:(x¢, €¢) because:

Vie (Xt, €r) =
ui(xe,€0) +p [ Z))<<t+1:1 Vir1(Xe1, €e401) Fie (Xeq1 |Xe ) 8et1 (€641 | Xeq
€t+1

@ Without further loss of generality we now define:
Uit (Xe, €¢) = E [uje(Xe, €1) [xe ] + €7t = Uft(Xt) + Gft

@ In this way we redefine the primitives by the preferences v} (x;), the
observed variables transitions fj; (x¢+1|x¢), and the distribution of

unobserved variables g; (€7 |x;) where €f = (€7,,...,€%,).
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Conditional Independence

Conditional value functions defined

@ Given conditional independence, define the conditional valuation
function as:

Vf; (%)

X
= “ft(Xt) + B f Y Vi Oarreig) fie (s [xe) 864 ( €141 Xet1
€r+1 xe+1=1

e Thus pj (x) is found by integrating over (€1, ..., €¢) in the regions:
€kt — ejt <v jt( Xt) = Vie(Xt)
hold for all k € {1,...,J}. That is pj(x) can be rewritten:

J
/ H / {th(Xntyet) < Vjt(Xntvet)}gt (et ‘Xt) de;

Gtk

= [ TTHeh - € < vilos) — vislon)} 6 (et ) des

t k=1

Miller (Structural Econometrics) Discrete Choice 3 September 2017 13/



Conditional Independence

Connection with static models

@ Suppose we only had data on the last period T, and wished to
estimate the preferences determining choices in T.

@ By definition this is a static problem in which vj7(z7) = ujT(z7).

@ For example to the probability of observing the J* choice is:

er+ur(zr) €T +uyr(z7) o
pst (27) 5[ ) ~~/:UH’T(ZT) [ gr (er |xr)der

@ The only essential difference between a estimating a static discrete
choice model using ML and a estimating a dynamic model satisfying
conditional independence using ML is that parametrizations of vje(x;)
based on ujt(xt) do not have a closed form, but must be computed
numerically.
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