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Distributional Assumptions about the Unobserved Variables
A trade off

We have already shown that the model is exactly identified up to a
normalization if the distribution of unobserved variables is known.

The model is underidentifed for counterfactuals on transitions.

Assumptions on preferences and transitions can help: for example
nonstationary transitions and stable preferences (an exclusion
restriction).

What if we want to relax assumption that the distribution of
unobserved variables is known?

Then we must place assumptions on the way systematic payoffs are
parameterized: note these are identifying assumptions.
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Motivating Example
Rust’s (1987) bus engine revisited

Recall Mr. Zurcher decides whether to replace the existing engine
(d1t = 1), or keep it for at least one more period (d2t = 1).

Bus mileage advances 1 unit (xt+1 = xt + 1) if Zurcher keeps the
engine (d2t = 1) and is set to zero otherwise(xt+1 = 0 if d1t = 1).

Transitory iid choice-specific shocks, εjt are Type 1 Extreme value.

Zurcher sequentially maximizes expected discounted sum of payoffs:

E

{
∞

∑
t=1

βt−1 [d2t (θ1xt + θ2s + ε2t ) + d1tε1t ]

}
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Motivating Example
ML Estimation when CCP’s are known (infeasible)

To show how the EM algorithm helps, consider the infeasible case
where s ∈ {1, . . . ,S} is unobserved but p(x , s) is known.
Let πs denote population probability of being in unobserved state s.
Supposing β is known the ML estimator for this "easier" problem is:

{θ̂, π̂} = argmax
θ,π

N

∑
n=1

ln

[
S

∑
s=1

πs
T

∏
t=1
l(dnt |xnt , s, p, θ)

]
where p ≡ p(x , s) is a string of probabilities assigned/estimated for
each (x , s) and l(dnt |xnt , sn, p, θ) is derived from our representation
of the conditional valuation functions and takes the form:

d1nt + d2nt exp(θ1xnt + θ2s + β ln [p(0, s)]− β ln [p(xnt + 1, s)]
1+ exp(θ1xnt + θ2s + β ln [p(0, s)]− β ln [p(xnt + 1, s)])

Maximizing over the sum of a log of summed products is
computationally burdensome.

Miller (Structural Econometrics) Discrete Choice 11 October 2017 4 / 24



Motivating Example
Why EM is attractive (but also infeasible when CCP’s are known)

The EM algorithm is a computationally attractive alternative to
directly maximizing the likelihood.
Denote by dn ≡ (dn1, . . . , dnT ) and xn ≡ (xn1, . . . , xnT ) the full
sequence of choices and mileages observed in the data for bus n.
At the mth iteration:

q(m+1)ns = Pr
{
s
∣∣∣dn, xn,θ(m),π(m)s , p

}
=

π
(m)
s ∏T

t=1 l(dnt |xnt , s, p, θ(m))
∑S
s ′=1 π

(m)
s ′ ∏T

t=1 l(dnt |xnt , s ′, p, θ(m))

π
(m+1)
s = N−1

N

∑
n=1

q(m+1)ns

θ(m+1) = argmax
θ

N

∑
n=1

S

∑
s=1

T

∑
t=1
q(m+1)ns ln[l(dnt |xnt , s, p, θ)]
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Motivating Example
Steps in our algorithm when is s is unobserved and CCP’s are unknown

Our algorithm begins by setting initial values for θ(1), π(1), and p(1) (·):
Step 1 Compute q(m+1)ns as:

q(m+1)ns =
π
(m)
s ∏T

t=1 l
[
dnt |xnt , s, p(m), θ(m)

]
∑S
s ′=1 π

(m)
s ∏T

t=1 l
(
dnt |xnt , s ′, p(m), θ(m)

)
Step 2 Compute π

(m+1)
s according to:

π
(m+1)
s =

∑N
n=1 q

(m+1)
ns

N

Step 3 Update p(m+1)(x , s) using one of two rules below
Step 4 Obtain θ(m+1) from:

θ(m+1) = argmax
θ

N

∑
n=1

S

∑
s=1

T

∑
t=1
q(m+1)ns ln

[
l
(
dnt |xnt , sn, p(m+1), θ

)]
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Motivating Example
Updating the CCP’s

Take a weighted average of decisions to replace engine, conditional on
x , where weights are the conditional probabilities of being in
unobserved state s.

Step 3A Update CCP’s with:

p(m+1)(x , s) =
∑N
n=1 ∑T

t=1 d1ntq
(m+1)
ns I (xnt = x)

∑N
n=1 ∑T

t=1 q
(m+1)
ns I (xnt = x)

Or in a stationary infinite horizon model use identity from model that
likelihood returns CCP of replacing the engine:

Step 3B Update CCP’s with:

p(m+1)(xnt , sn) = l(dnt1 = 1|xnt , sn, p(m), θ(m))
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First Monte Carlo
Finite horizon renewal problem

Suppose s ∈ {0, 1 } equally weighted.
There are two observed state variables

1 total accumulated mileage:

x1t+1 =
{

∆t if d1t = 1
x1t + ∆t if d2t = 1

2 permanent route characteristic for the bus, x2, that systematically
affects miles added each period.

We assume ∆t ∈ {0, 0.125, . . . , 24.875, 25} is drawn from:

f (∆t |x2) = exp [−x2(∆t − 25)]− exp [−x2(∆t − 24.875)]

and x2 is a multiple 0.01 drawn from a discrete equi-probability
distribution between 0.25 and 1.25.
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First Monte Carlo
Finite horizon renewal problem

Let θ0t be an aggregate shock (denoting cost fluctuations say).

The difference in current payoff from retaining versus replacing the
engine is:

u2t (x1t , s)− u1t (x1t , s) ≡ θ0t + θ1min {x1t , 25}+ θ2s

Denoting the observed state variables by xt ≡ (x1t , x2) , this
translates to:

v2t (xt , s)− v1t (xt , s) = θ0t + θ1min {x1t , 25}+ θ2s

+β ∑
∆t∈Λ

{
ln
[

p1t (0, s)
p1t (x1t + ∆t , s)

]}
f (∆t |x2)
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First Monte Carlo
Table 1 of Arcidiacono and Miller (2011)
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The Estimators
Maximization

We parameterize ujt (zt ) and G (εt ) by θ, fjt (zt+1|zt ) with α, and
following our motivating example, we define two estimators.
Given any conditional choice probability mapping p̂, both maximize
the joint log likelihood:

(θ̂, π̂, α̂) = argmax
(θ,π,α,)

∑N
n=1 ∑S

s=1 πs log L (dn, xn |xn1, s ; θ, p̂)

where L (dn, xn |xn1, s ; θ, p̂) is the likelihood of the (panel length)
sequence (dn, xn):

L (dn, xn |xn1, s ; θ,π, p) =
T
∏
t=1
Lt (dnt , xnt+1 |xnt , s ; θ,π, p)

and Lt (dnt , xnt+1 |xnt , snt ; θ,π, p) is:
J

∑
j=1
djnt ljt (xnt , snt , θ,π, p)fjt (xn,t+1|xnt , snt , θ)
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The Estimators
Using the Likelihood to obtain the CCP’s

The difference between the estimators arises from how p̂ is defined.

The first estimator is based on the fact that ljt (xnt , sn, θ, α,π, p) is the
likelihood of observing individual n make choice j at time t given sn.

Accordingly define p̂ (x , s) to solve:

p̂jt (x , s) = ljt (x , s; θ̂, α̂, π̂, p̂)

The large sample properties are standard.
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The Estimators
An empirical approach to the CCP’s

Let L̂n(sn = s) denote the joint likelihood of the data for n and being

in unobserved state s evaluated at
(

θ̂, α̂, π̂, p̂
)
.

L̂n(sn = s) ≡ π̂sL
(
dn, xn |xn1, s ; θ̂, p̂

)
Also denote by L̂n the likelihood of observing (dn, xn) given parameter

values
(

π̂, θ̂, p̂
)
:

L̂n ≡ ∑S
s=1 π̂sL

(
dn, xn |xn1, s ; θ̂, p̂

)
= ∑S

s=1 L̂n(sn = s)

As an estimated sample approximation, N−1 ∑N
n=1

[
L̂n(sn = s)/L̂n

]
is

the fraction of the population in s.
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The Estimators
Another CCP "fixed point"

Similarly:

1 N−1 ∑Nn=1
[
I (xnt = x)L̂n(sn = s)/L̂n

]
is the estimated fraction of the

population in s with x at t.
2 N−1 ∑Nn=1

[
djnt I (xnt = x)L̂n(sn = s)/L̂n

]
is the estimated fraction

choosing j at t as well.

We define:

p̂jt (x , s) =[
N
∑
n=1

djnt I (xnt = x)
L̂n(sn = s)

L̂n

]/[
N
∑
n=1

I (xnt = x)
L̂n(sn = s)

L̂n

]

Compared to the first one this estimator has similar properties but
imposes less structure.
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Unobserved Markov Chain
Extending the estimation framework

Up until now we have been assuming that the unobserved component
is time invariant.

Now suppose st is a Markov chain where π (st+1|st ) is an exogenous
probability transition where:

fjt (xt+1, st+1 |xt , st ) = π (st+1|st ) fjt (xt+1 |xt , st )

and π1 (s1 |x1 ) is the probability of being in (unobserved) state s1
conditional on (observed) state x1 in the first period.

The intuition for the simpler case follows through in this
generalization.
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Unobserved Markov Chain
Extending the algorithm

We obtain the CCP’s, p(m) (x , s) , at the mth step using one of the
two ways we described above.

The EM algorithm is used in obtaining θ(m) in the same way as before.

So we only have to determine:

1 q(m)nst , the probability of n being in unobserved state s at time t,
2 π

(m)
1 (s1 |x1 ), the probability distribution over the initial unobserved
states conditional on the initial observed states,

3 π(m) (s ′|s) , the transition probabilities of the unobserved states.
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Unobserved Markov Chain
The remaining pieces of the algorithm

1 q(m+1)nst follows from Bayes rule:

q(m+1)nst =
L(m)n (snt = s)

L(m)n

2 Averaging over q(m+1)ns1 :

π
(m+1)
1 (s |x ) = ∑Nn=1 q

(m+1)
ns1 I (xn1 = x)

∑Nn=1 I (xn1 = x)
3 Let qns ′t |s denote the probability of n being in unobserved state s

′ at
time t conditional on the data and also on being in unobserved state
s at time t − 1. We base π(m+1)(s ′|s) on sample analogs of the
identity:

π(s ′|s) =
En
[
qns ′t |sqnst−1

]
En [qnst−1]

where En is the expectation taken over the population.
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A Third Two Stage Estimator
An unrestricted first stage estimator

Alternatively, subject to identification, we could estimate unrestricted
CCPs in a first stage, and then plug them into the structural part of
the econometric model.

1 Estimate fjt (xn,t+1 |xnt , sn , α) that is α and pjt (x , s) from an
unrestricted likelihood formed from:

J

∏
j=1

[
pjt (xnt , sn) fjt (xn,t+1 |xnt , sn , α)

]djnt
2 Estimate θ using the conditional choice probabilities and the
unobserved transitions on the unobserved variables obtained in the first
step.

Apart from not estimating θ, the essential difference in the first stage
of this alternative estimator and the previous one, is that the
likelihood components of this one come from pjt (x , s) not

Lj
(
dt
∣∣∣x , s; θ̂, α̂, π̂, p̂) .
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Second Monte Carlo
Structure

Entrants pay startup cost to compete in the market, but not
incumbents.

Paying startup cost now transforms entrant into incumbent next
period.

Declining to compete in any given period is tantamount to exit.

When a firm exits another firm potentially enters next period.
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Second Monte Carlo
Dynamics

There are two sources of dynamics in this model.

An entrant depreciates startup cost over its anticipated lifetime.

Since it is more costly for an entrant to start operations, than for an
incumbent to continue, the number of incumbents signals how much
competition the firm faces in the current period, and consequently
affects its own decision whether to exit the industry or not.
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Second Monte Carlo
Two observed state variables

Each market has a permanent market characteristic, denoted by x1,
common to each player within the market and constant over time, but
differing independently across markets, with equal probabilities on
support {1, . . . , 10}.
The number of firm exits in the previous period is also common
knowledge to the market, and this variable is indicated by:

x2t ≡
I
∑
h=1

d (h)1,t−1

This variable is a useful predictor for the number of firms that will
compete in the current period.

Intuitively, the more players paying entry costs, the lower the expected
number of competitors.
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Second Monte Carlo
Unobserved (Markov chain state) variables, and price equation

The unobserved state variable st ∈ {1, . . . , 5} follows a first order
Markov chain.

We assume that the probability of the unobserved variable remaining
unchanged in successive periods is fixed at some π ∈ (0, 1), and that
if the state does change, any other state is equally likely to occur with
probability (1− π) /4.
We generated also price data on each market, denoted by wt , with
the equation:

wt = α0 + α1x + α2st + α3
I
∑
h=1

d (h)1t + ηt

where ηt is distributed as a standard normal disturbance
independently across markets and periods, revealed to each market
after the entry and exit decisions are made.
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Second Monte Carlo
Utility and number of firms and markets

The flow payoff of an active firm i in period t, net of private
information ε

(i )
2t is modeled as:

U2
(
x (i )t , s

(i )
t , d

(−i )
t

)
= θ0 + θ1x + θ2st + θ3

I
∑
h=1

d (h)1t + θ4d
(i )
1,t−1

We normalize exit utility as U1
(
x (i )t , s

(i )
t , d

(−i )
t

)
= 0

We assume ε
(i )
jt is distributed as Type 1 Extreme Value.

The number of firms in each market in our experiment is 6.

We simulated data for 3, 000 markets, and set β = 0.9.

Starting at an initial date with 6 entrants in the market, we ran the
simulations forward for twenty periods.
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Second Monte Carlo
Table 2 of Arcidiacono and Miller (2011)
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