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Criteria for Evaluating Estimators
Three criteria for assessing an estimator

Three criteria for evaluating different estimators are:
1 Large sample properties:

Does the estimator converge to the identified set?
If so, what is the rate of convergence?
What is the asymptotic distribution of the estimator?

2 Finite sample properties:

At what sample size do the finite sample properties accurately reflect
the asymptotic distribution?
For a given sample size, what is the standard deviation and mean
squared error of the estimator ?

3 Implementation:

Is the estimator defined by an algorithm or only a set of conditions to
be satisfied?
Are numerical approximations involved?
Does the estimator require tuning parameters or instruments?
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Large Sample or Asymptotic Properties
In what sense does an estimator converge, and what does it converge to?

There are several types of convergence, such as: almost sure, in mean
square, and in probability.

Given a type of convergence, we ask:
1 Does the estimator converge to a set that includes the identified set?
In other words is the estimator is tight?

2 Is the set of parameters to which the estimator converges included in
the identified set? In other words is the estimator is sharp?

If both conditions are satisfied, then we say the estimator is
consistent.

For example if the identified set is a singleton, that is the model is
pointwise identified, then an estimator is consistent if it converges to
that singleton.
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Large Sample or Asymptotic Properties
The rate of convergence

The other two criteria are extensively analyzed in econometric theory,
and can typically be applied in a straightforward way to dynamic
discrete choice models in a straightforward way.

For example, suppose the parameter space is Θ, the data is generated
by θ0 ∈ Θ, the model in point identified, and the estimator, denoted
by θN is consistent with:

θN −→
p

θ0

The rate of convergence is defined by Nα where:

α = arg sup
a

[Na (θN − θ0)] −→
p
0

Structural estimates of dynamic discrete choice models are typically√
N consistent.
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Large Sample or Asymptotic Properties
The asymptotic distribution

Suppose θN converges in probability to θ0 at rate α.

Let ξ be drawn from the limiting distribution of Nα (θN − θ0):

Nα (θN − θ0) −→
d

ξ

Structural estimates of dynamic discrete choice models are typically
asymptotically normal.

An estimator is asymptotically effi cient if ξ is N
(
0, I (θ0)−1

)
where:

I (θ) ≡ E
[

∂l (d , x |x1 ; θ)
∂θ

∂l (d , x |x1 ; θ)
∂θ

′
]
= −E

[
∂2l (d , x |x1 ; θ)

∂θ∂θ′

]
and the likelihood is based on the sequence (d , x) conditional on the
state at date one, x1.
The ML estimator for dynamic discrete choice models typically attain
I (θ0)−1 the Cramer-Rao lower bound.
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Implementation
Does an algorithm define the estimator?

Ideally an estimator is defined by an algorithm that depends on the
data for each sample size N. In that case the estimator:

1 can be implemented mechanically, so is easy to explain;
2 is easy to replicate on the same and on different data sets, a virtue in
scientific enquiry.

Cell estimators and hence unrestricted ML estimators satisfy this
definition.

An OLS estimator also satisfies the first definition because algorithms
exist to invert matrices exactly, within a finite number of steps.

Similarly Gaussian methods, successively substituting out parameters,
solve linear systems quickly within a finite number of steps.
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Implementation
Is the estimator defined by a set of conditions it must satisfy?

A weaker, more inclusive definition is that an estimator solves a set of
conditions jointly satisfied by the parameter values and the data.
Since the algorithm used to implement the estimator is not defined,
such estimators are almost invariably, less transparent, and therefore
harder to replicate with data.
Extremum estimators for nonlinear models defined this way include:

nonlinear least squares;
full solution estimators to dynamic discrete choice models;
CCP estimators in which G or β is estimated.

It is useful to know whether a unique solution exists. For example:
Is the minimization (maximization) problem strictly convex (concave)?

If not, can all the parameters, bar one or two, be solved in terms of
the one or two remaining parameters?

In the first case, the concentrated objective function can be plotted.
In the second equi-value contours can be plotted.
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Implementation
Are numerical approximations involved?

Because ML estimation of dynamic discrete choice models is relatively
imposing in terms of programming demands and computational time,
researchers economize on both by using numerical approximations:

1 approximating E [max {x , y}] with max {E [x ] ,E [y ]};
2 approximating distant horizons with zero;
3 linearizing the value function;
4 interpolating the state space to obtain estimates of continuation values;
5 approximating smoothed integrals with rectangles and quadrilaterals;
6 reducing the impact of the state space by treating the continuation
value as a suffi cient statistic for the state space;

7 more generally only allowing the individuals to condition on a smaller
set of values than there are state variables.

These approximation errors open a gap between the defined estimator
and its numerical counterpart.
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Maximum Likelihood Estimation
Data and outside knowledge

Suppose the data comes from a long panel (either stationary or
complete panel histories for finite lived agents).

Also assume we know:
1 the discount factor β
2 the distribution of disturbances Gt (ε |x )
3 u1t (x) (or more generally one of the payoffs for each state and time).
4 u1t (x) = 0 (for notational convenience)

Since the panel is long, pt (x) and hence ψjt (x) are identified.

There are, of course, alternative assumptions that deliver
identification, and the methods described below are generic.
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Maximum Likelihood Estimation
The likelihood

To simplify the notation, consider a sample of N independently drawn
observations on the whole history t ∈ {1, . . . ,T} of individuals
n ∈ {1, . . . ,N} , with data on their state variables decisions denoted
by xnt , and decisions denoted by dnjt .

The joint probability distribution of the decisions and outcomes is:

N

∏
n=1

T

∏
t=1

(
J

∑
j=1

X

∑
x ′=1

dnjt I
{
xn,t+1 = x ′

}
pjt (x)fjt (x ′|x)

)

Taking logs yields:

N

∑
n=1

T

∑
t=1

J

∑
j=1
dnjt

{
log [pjt (xnt )] +

X

∑
x=1

I {xn,t+1 = x} log [fjt (x |xnt )]
}
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Maximum Likelihood Estimation
The reduced form

Note the choice probabilities are additively separable from the
transition probabilities in the formula for the joint distribution of
decisions and outcomes.
Hence the estimation of the joint likelihood splits into one piece
dealing with the choice probabilities conditional on the state, and
another dealing with the transition conditional on the choice and
state.
Maximizing each additive piece separately with respect to fj (x ′|x)
and pt (xnt ) we obtain the unrestricted ML estimators:

f̂jt
(
x ′ |x

)
=

∑N
n=1 I {xnt = x , dnjt = 1, xn,t+1 = x ′}

∑N
n=1 I {xnt = x , dnjt = 1}

and:

p̂jt (x) =
∑N
n=1 I {xnt = x , dnjt = 1}

∑N
n=1 I {xnt = x}
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Maximum Likelihood Estimation
Estimating an intermediate probability distribution

Following the notation of Lecture 9, let κjtτ(xt+τ+1|xt ) denote the
probability of reaching xt+τ+1 at t + τ + 1 from xt by following
action j at t and then always choosing the first action:

κjtτ(xt+τ+1|xt ) ≡
{
fjt (xt+1|xt ) τ = 0
∑X
x=1 f1,t+τ(xt+τ+1|x)κjt ,τ−1(x |xt ) τ = 1, . . .

Thus we can recursively estimate κjtτ(xt+τ+1|xt ) with:

κ̂jtτ(xt+τ+1|xt ) ≡
{
f̂jt (xt+1|xt ) τ = 0
∑X
x=1 f̂1,t+τ(xt+τ+1|x)κ̂jt ,τ−1(x |xt ) τ = t + 1, . . .

Similarly we estimate ψjt (xt ) with ψ̂jt (xt ) using the p̂jt (x) estimates
of the CCPs.
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Maximum Likelihood Estimation
Unrestricted estimates of the primitives

From previous lectures:

ujt (xt ) = ψ1t (xt )− ψjt (xt )

+
T−t
∑
τ=1

X

∑
x=1

βτ−tψ1,t+τ(x) [κt1,τ−1(x |xt )− κtj ,τ−1(x |xt )]

Substituting κ̂τ−1(x |xt , j) for κτ−1(x |xt , j) and ψjt (xt ) with ψ̂jt (xt )
then yields:

ûjt (xt ) ≡ ψ̂1t (xt )− ψ̂jt (xt )

+
T−t
∑
τ=1

X

∑
x=1

βτ−t ψ̂1,t+τ(x) [κ̂t1,τ−1(x |xt )− κ̂tj ,τ−1(x |xt )]

The stationary case is similar (and has the matrix representation we
discussed in previous lectures).
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Large Sample or Asymptotic Properties
Properties of the unrestricted ML estimator

By the Law of Large Numbers f̂jt (x ′ |x ) converges to fjt (x ′ |x ) and
p̂jt (x) converges to pjt (x), both almost surely.

By the Central Limit Theorem both estimators converge at
√
N and

and have asymptotic normal distributions.

Both f̂jt (x ′ |x ) and p̂jt (x) are ML estimators for fjt (x ′ |x ) and pjt (x)
and obtain the Cramer-Rao lower bound asymptotically.

Since and ujt (x) is exactly identified, it follows by the invariance
principle that ûjt (x) is consistent and asymptotically effi cient for
ujt (xt ), also attaining its Cramer Rao lower bound.

The same properties apply to the stationary model.
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Maximum Likelihood Estimation
Restricted ML estimates of the primitives

In practice applications further restrict the parameter space.

For example assume θ ≡
(

θ(1), θ(2)
)
∈ Θ is a closed convex subspace

of Euclidean space, and:

ujt (x) ≡ uj (x , θ(1))
fjt (x |xnt ) ≡ fjt (x |xnt , θ(2))

We now define the model by (T , β, θ, g).

Assume the DGP comes from (T , β, θ0, g) where θ0 ∈ Θ(interior ).

The ML estimator, denoted by θML, maximizes:

N

∑
n=1

T

∑
t=1

J

∑
j=1
dnjt

{
ln [pjt (xnt , θ)] +

X

∑
x=1

I {xn,t+1 = x} ln
[
fjt (x |xnt , θ(2))

]}

over θ ∈ Θ where pt (x , θ) are the CCPs for (T , β, θ, g).
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Maximum Likelihood Estimation
A common variation on the ML estimator

A common variation on the ML estimator is:
1 estimate fjt (x |xnt , θ(2)) from the state transitions.

2 obtain a limited information ML estimator θ
(2)
LIML.

3 estimate θ(1) by searching over pt (x , θ(1), θ
(2)
LIML).

More precisely we define:

θ
(2)
LIML ≡ argmax

θ2

N

∑
n=1

T

∑
t=1

J

∑
j=1

X

∑
x=1

I {xn,t+1 = x} dnjt log
[
fjt (x |xnt , θ(2))

]
θ̂
(1)
ML ≡ argmax

θ1

N

∑
n=1

T

∑
t=1

J

∑
j=1
dnjt

{
log
[
pjt (xnt , θ

(1), θ
(2)
LIML)

]}
Note that:

when θ
(2)
0 , that is fjt (x |xnt ), is known, θ̂

(1)
ML = θ

(1)
ML;

otherwise θ̂
(1)
ML is less effi cient but computationally simpler than θ

(1)
ML;

nevertheless both estimators solve for the optimal rule many times.
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Quasi Maximum Likelihood Estimation
The steps (Hotz and Miller, 1993)

The essential difference between this estimator and ML is this
estimator substitutes an estimator of the continuation value into the
likelihood rather than computing it from the optimal policy function:

1 Estimate the reduced form p̂ and f̂ (or θ
(2)
LIML) as above;

2 Apply the Representation Theorem to obtain expressions for
vjt (xt )− vkt (xt );

3 Substitute the reduced form estimates into these differences to obtain
v̂jt
(
x , θ(1)

)
− v̂kt

(
x , θ(1)

)
for any given θ(1);

4 Replace vjt (xt ) with v̂jt
(
x , θ(1)

)
in the random utility model (RUM)

to obtain an estimate p̂jt
(
x , θ(1)

)
for any given θ(1);

5 Maximize the quasi-likelihood with respect to θ(1).

In effect we estimate a static RUM where differences in current
utilities uj

(
x , θ(1)

)
− uk

(
x , θ(1)

)
are augmented by a dynamic

correction factor estimated in the first stage off the reduced form.
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Quasi Maximum Likelihood Estimation
Notes on QML Estimation

In the second step, appealing to the Representation theorem, and the
slides above v̂jt

(
x , θ(1)

)
− v̂kt

(
x , θ(1)

)
=

uj
(
x , θ(1)

)
− uk

(
x , θ(1)

)
−
T−t
∑
τ=1

X

∑
x=1

βτψ̂1,t+τ(x)
[

κ̂kt ,τ−1(x |xt )
−κ̂jt ,τ−1(x |xt )

]
In the last two steps we define:

p̂jt
(
x , θ(1)

)
≡
∫
εt

J

∏
k=1

I

{
εkt − εjt

≤ v̂jt
(
x , θ(1)

)
− v̂kt

(
x , θ(1)

) } dGt (εt |xt )
and:

θ
(1)
QML ≡ argmax

θ1

N

∑
n=1

T

∑
t=1

J

∑
j=1
dnjt

{
log
[
p̂jt (xnt , θ

(1), θ
(2)
LIML)

]}
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Quasi Maximum Likelihood Estimation
Exploiting finite dependence in QML Estimation

Supposing there is ρ-period dependence, we could form:

ṽjt
(
x , θ(1)

)
− ṽit

(
x , θ(1)

)
= uj

(
x , θ(1)

)
− ui

(
x , θ(1)

)
+

ρ

∑
τ=1

(J ,X )

∑
(k ,xt+τ)

βτ


[
ui
(
xt+τ, θ

(1)
)
+ ψ̂kτ(xt+τ)

]
×[

ωiktτ (xt , xt+τ) κ̂it ,τ−1(xt+τ|xt )
−ωjktτ (xt , xt+τ) κ̂jt ,τ−1(xt+τ|xt )

] 
Then p̃jt (x , θ1) is formed in an analogous manner to p̂jt (x , θ1)

The last maximization step is defined in a similar way.

Note this estimator does not have exactly the same interpretation as
θ
(1)
QML, because the dynamic selection correction involves the current
utility parameters.
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Quasi Maximum Likelihood Estimation
Adjusting the asymptotic covariance for pre-estimation (Hotz and Miller, 1993)

Form P
(

θ(1), p, f
)
, a mapping from Θ(1) × P × F to P with:

κjtτ(xt+τ+1|xt ) ≡
{
fjt (xt+1|xt ) τ = 0
∑X
x=1 f1,t+τ(xt+τ+1|x)κjt ,τ−1(x |xt ) τ = t + 1, . . .

vjt
(
x , θ(1)

)
− vkt

(
x , θ(1)

)
= uj

(
x , θ(1)

)
− uk

(
x , θ(1)

)
−
T−t
∑
τ=1

X

∑
x=1

βτψ1,t+τ(x)
[

κkt ,τ−1(x |xt )
−κjt ,τ−1(x |xt )

]

pjt
(
x , θ(1)

)
≡
∫
εt

J

∏
k=1

I

{
εkt − εjt

≤ vjt
(
x , θ(1)

)
− vkt

(
x , θ(1)

) } gt (εt |xt ) dεt
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Quasi Maximum Likelihood Estimation
Adjusting the asymptotic covariance for pre-estimation

Let:

π1n
(

θ(1), p, f
)
= WN

{
zn ⊗

[
dn − P

(
θ(1), p, f

)]}
where WN is a weighting matrix and zn are instruments.

Define the CCP estimator for θ
(1)
CCP by solving:

∑N
n=1 π1n

(
θ(1), p̂, f̂

)
= 0
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Large Sample or Asymptotic Properties
The asymptotic covariance matrix

Write the cell estimators as the solution to:

0 = ∑N
n=1 π2n

(
p̂, f̂
)
= ∑N

n=1

[
I dn (dn − p̂)
I fn
(
fn − f̂

) ]
where:

I dn is a (J − 1)XT dimensional row vector indicator function matching
the state variables of n to the relevant CCP component(s) in p;
I fn is a (J − 1)X 2T dimensional row vector indicator function
matching state variables and decision(s) of n to f components;
fn is the outcome from the n making a choice given her state variables.

For k ∈ {1, 2} and k ′ ∈ {1, 2} define:

Ωkk ′ ≡ E
[
πknπ′k ′n

]
Γ11 ≡ E

[
∂π1n

∂θ(1)

]
Γ12 ≡ E

[
∂π1n

∂p
,

∂π1n
∂f

]
Then the asymptotic covariance matrix for θ

(1)
CCP , denoted by Σ1, is:

Σ1 = Γ−111
[
Ω11 + Γ12 (Ω22 −Ω21 −Ω12) Γ′12

]
Γ−1′11
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Minimum Distance Estimators
Minimizing the difference between unrestricted and restricted current payoffs

Another approach is to match up the parametrization of ujt (xt ),
denoted by ujt (xt , θ

(1)), to its representation as closely as possible:
1 Form the vector function where Ψ (p, f ) by stacking:

Ψjt (xt , p, f ) ≡ ψ1t (xt )− ψjt (xt )

+
T−t
∑

τ=1

X

∑
x=1

βτψ1,t+τ(x)
[

κkt ,τ−1(x |xt )
−κjt ,τ−1(x |xt )

]
2 Estimate the reduced form p̂ and f̂ .
3 Minimize the quadratic form to obtain:

θ
(1)
MD = argmin

θ(1)∈Θ(1)

[
u(x , θ(1))−Ψ

(
p̂, f̂
)]′

W̃
[
u(x , θ(1))−Ψ

(
p̂, f̂
)]

= argmin
θ(1)∈Θ(1)

[
u(x , θ(1))′W̃ u(x , θ(1))− 2Ψ

(
p̂, f̂
)′
W̃ u(x , θ(1))

]
where W̃ , is a square (J − 1)TX weighting matrix.
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Minimum Distance Estimators
Notes on minimizing the difference between unrestricted and restricted payoffs

From the Representation theorem ujt (xt , θ
(1)
0 ) = Ψjt (xt , p, f0) if p are

the CCPs for (T , β, θ0, g).

Furthermore ujt (x) is exactly identified from Ψjt (x , p, f0) without
imposing any additional restrictions.

Therefore parameterizing u with θ
(1)
0 imposes overidentifying

restrictions so θ
(1)
MD is consistent if the restrictions are true.

Note θ
(1)
MD has a closed form if u(x ; θ(1)0 ) is linear in θ

(1)
0 .
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Minimum Distance Estimators
A minimum distance estimator that exploits finite dependence (Altug and Miller, 1998)

We can adapt this estimator by exploiting finite dependence.
Suppose utility is stable over time with ujt

(
x , θ(1)

)
= uj

(
x , θ(1)

)
,

and that ωiktτ (xt , xt+τ) achieves ρ dependence for all K choices at
each x at t:

1 Form the K (T − ρ)X utility vector Λ
(

θ(1), p, f
)
from

Λijt
(
xt , θ(1), p, f

)
=

uj
(
xt , θ(1)

)
− ui

(
xt , θ(1)

)
− ψjt (xt ) + ψit (xt )

ρ

∑
τ=1

(J ,X )

∑
(k ,xτ)

βτ


[
uk
(
xt+τ, θ

(1)
)
+ ψk ,t+τ(xt+τ)

]
×[

ωiktτ (xt , xt+τ) κit ,τ−1(xt+τ |xt )
−ωjktτ (xt , xt+τ) κjt ,τ−1(xt+τ |xt )

] 
2 Given K (T − ρ)X weighting matrix W , minimize:

Λ
(

θ(1), f̂ , p̂
)′
WΛ

(
θ(1), f̂ , p̂

)
This estimator also has a closed form solution if uj

(
x , θ(1)

)
is linear

in θ(1).
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Simulated Moments Estimators
A simulated moments estimator (Hotz, Miller, Sanders and Smith, 1994)

We could form a Methods of Simulated Moments (MSM) estimator
from:

1 Simulate a lifetime path from xntn onwards for each j , using f̂ and p̂.
2 Obtain estimates of Ê

[
εjt

∣∣∣dojt = 1, xt ].
3 Stitch together a simulated lifetime utility outcome from the j th choice

at tn onwards for n, denoted v̂nj ≡ v̂jtn
(
xntn ; θ

(1), f̂ , p̂
)
.

4 Form the J − 1 dimensional vector hn
(
xntn ; θ

(1), f̂ , p̂
)
from:

hnj
(
xntn ; θ

(1), f̂ , p̂
)
≡ v̂jtn

(
xntn , θ

(1), f̂ , p̂
)
− v̂Jtn

(
xntn , θ

(1), f̂ , p̂
)

+ψ̂jt (xntn )− ψ̂Jt (xntn )

5 Given a weighting matrix WS and an instrument vector zn minimize:

N−1
[
∑N
n=1 znhn

(
xntn ; θ

(1), f̂ , p̂
)]′

WS

[
∑N
n=1 znhn

(
xntn ; θ

(1), f̂ , p̂
)]
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Simulated Moments Estimators
Notes on this MSM estimator

In the first step, given the state simulate a choice using p̂, and
simulate the next state using f̂ . In this way generate x̂ns and
d̂ns ≡

(
d̂n1s , . . . , d̂nJs

)
for all s ∈ {tn + 1, . . . ,T}.

Generating this path does not exploit knowledge of G , only the CCPs.

In the second step Ê
[
εjt

∣∣∣dojt = 1, xt ] ≡
p−1jt (xt )

∫
εt

J

∏
k=1

I
{

ψ̂jt (xt )− ψ̂kt (xt ) ≤ εjt − εkt

}
εjtg (εt ) dεt

In Step 4 v̂jt
(
xntn , θ

(1), f̂ , p̂
)
is stitched together as:

ujt (xntn , θ
(1))+

T

∑
s=t+1

J

∑
j=1

βt−11
{
d̂njs = 1

}{ ujs (x̂ns , θ
(1))

+Ê
[
εjs

∣∣∣x̂ns , d̂njs = 1]
}

The solution has a closed form if ujt (x , θ
(1)) is linear in θ(1).
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Simulated Moments Estimators
Another MSM estimator

Indeed εt could be simulated as well:
1 Draw a realization ε̂ from G (ε) for each s ∈ {tn , . . . ,T} and n.
2 Set:

d̂njs =
J

∏
k=1

I
{

ψ̂js (x̂ns )− ψ̂ks (x̂ns ) ≤ ε̂njs − ε̂nks

}
and stitch together:

ujt (xntn , θ
(1)) +

T

∑
s=t+1

J

∑
j=1

βt−11
{
d̂njs = 1

}{
ujs (x̂ns , θ

(1)) + ε̂js

}
3 Minimize an analogous quadratic form to obtain θ(1).

Bajari, Benkard and Levin (2007) estimate an approximate reduced
form of the policy function without exploiting the CCPs (pages
1341-1342, 2007), but acknowledge: "Our method requires that one
be able to consistently estimate each firm’s policy function, so this
may limit our ability to estimate certain models (page 1345, 2007)."
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Large Sample or Asymptotic Properties
Adjusting the asymptotic covariance for simulation as well

Simulation adds an additional, independent source of variation to the
sample moments and hence the estimated asymptotic standard errors.

Following the definition given in Lecture 7 suppose θ̂
(1)
minimizes:

N−1
[
∑N
n=1 znhn

(
xntn , θ

(1), f̂ , p̂
)]′

WS

[
∑N
n=1 znhn

(
xntn , θ

(1), f̂ , p̂
)]

Then the additional component to the covariance matrix for θ̂
(1)
is:

ΣS1 ≡ S−1
(
Υ′WSΥ

)−1 Υ′WSE
[
znhnh′nz

′
n

]
WSΥ

(
Υ′WSΥ

)−1
where S is the number of simulations (per observation):

Υ = E

zn∂hn
(
xntn , θ

(1),
0 f0, p0

)
∂θ(1)


Note that ΣS1 → 0 as S → ∞.
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Summary
Effi ciency versus computational ease

There is a trade off between effi ciency and computational ease:
1 ML estimator;
2 2 step asymptotically effi cient CCP estimators based on a Newton step;
3 QML estimators (still nonlinear);
4 MD estimators (closed form if utility is linear in the parameters and
minimal use of functional form of G );

5 Simulation CCP estimators (similar to MD estimators)

Within each of these categories finite dependence can be exploited if
that property holds.

Miller (Structural Econometrics) Discrete Choice 10 October 2017 30 / 30


