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Bayesian Learning
Motivation

Adam Smith, and many others, including perhaps your parents, have
commented on "the hasty, fond, and foolish intimacies of young
people" (Smith, page 395, volume 1, 1812).

One approach to explaining such behavior is to argue that some
people are not rational all the time.

A challenge for this approach is to develop an axiomatic theory for
irrational agents that has refutable predictions.

There is ongoing research in behavioral economics and economic
theory in this direction.

Another approach, embraced by many labor economists, is that by
repeatedly sampling experiences from an unfamiliar environment,
rational Bayesians update their prior beliefs as they sequentially solve
their lifecycle problem.
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Bayesian Learning
Applying the methodology

This issue seems like a candidate for applying the methodology
described in the previous slides:

1 Write down a dynamic discrete choice model of Bayesian updating and
sequential optimization problem;

2 Solve the individual’s optimization problem (for all possible
parameterizations of the primitives);

3 Treat important factors to the decision maker that are not reported in
the sample population as unobserved variables to the econometrician;

4 Integrating over the probability distribution of unobserved random
variables, form the likelihood of observing the sample;

5 Maximize the likelihood to obtain the structural parameters that
characterize the dynamic discrete choice problem;

6 Predict how the individual would adjust her behavior if she was
confronted with new opportunities to learn or different payoffs.
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Job Matching and Occupational Choice (Miller JPE, 1984)
Individual payoffs and choices

The payoff from job m ∈ M at time t ∈ {0, 1, . . .} is:
xmt ≡ ψt + ξm + σmεmt

where:
ψt is a lifecycle trend shaping term that plays no role in the analysis;

ξm is a job match parameter drawn from N
(

γm , δ
2
m

)
;

εmt is an idiosyncratic iid disturbance drawn from N (0, 1)

Every period t the individual chooses a job m to work in. The choice
at t is denoted by dmt ∈ {0, 1} for each m ∈ M where:

∑
m∈M

dmt = 1

The realized lifetime utility of the individual is:
∞

∑
t=0

∑
m∈M

βtdmtxmt
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Job Matching and Occupational Choice (Miller JPE, 1984)
Processing information

At t = 0 the individual sees
(
γm , δ

2
m

)
for all m ∈ M.

At every t, after making her choice, she also sees ψt , and dmtxmt for
all m ∈ M.
Following Degroot (Optimal Statistical Decisions 1970, McGraw Hill)
the posterior beliefs of an individual for job m ∈ M at time
t ∈ {0, 1, . . .} are N

(
γmt , δ

2
mt

)
where:

γmt =
δ−2m γm + σ−2m ∑t−1

s=0 (xms − ψs ) dms
δ−2m + σ−2m ∑t−1

s=0 dms

δ−2mt = δ−2m + σ−2m
t−1
∑
s=0

dms

She maximizes the sum of expected payoffs, sequentially choosing dmt
for each m ∈ M at t given her beliefs N

(
γmt , δ

2
mt

)
.
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Optimization
Maximization using Dynamic Allocation Indices (DAIs)

Corollary (from Theorem 2 in Gittens and Jones,1974)

At each t ∈ {1, 2, . . .} it is optimal to select the m ∈ M maximizing:

DAIm (γmt , δmt ) ≡ sup
τ≥t

{
E [∑τ

r=t βr (xmr − ψr ) |γmt , δmt ]
E [∑τ

r=t βr |γmt , δmt ]

}

To understand the intuition for this rule, consider two projects, m∗

taking 4 periods with payoffs {1, 8, 7, x∗} and another m∗∗ taking 2
periods with payoffs {6, x∗∗} .
Suppose m∗ can be split into a 3 period project with payoffs {1, 8, 7}
and an additional 1 period project with payoff {x∗} that cannot be
undertaken before the 3 period project is completed, but does not
have to be undertaken immediately afterwards.

What is the optimal order for undertaking the projects?
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Optimization
Intuition for the optimal rule

Corollary (Proposition 4 of Miller, 1984)
In this model:

DAIm (γmt , δmt ) = γmt + δmtD

[(
σm
δm

)2
+∑t−1

s=0 dms

]

where D (·) is the (standard) DAI for a (hypothetical) job whose match
parameter ξ is drawn from N (0, 1) and whose payoff net of the general
component is σ2εt .

D (·) can be numerically computed by solving for the fixed point of a
contraction mapping. (See Proposition 5 of Miller, 1984.)
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Optimization
Optimal turnover

D (·) is a deceasing function. Thus DAIm (γmt , δmt ) ↑ as:
γmt , δmt and δm ↑
σm and ∑t−1s=0 dms ↓.

Given γm :

Occupations with high δm and low σm are experimented with first;
Matches with low σm are resolved for better or worse relatively quickly;
Turnover declines with tenure. (See also Jovanovic, 1979.)
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Optimization with One Job Type
A more conventional approach to the solution

Simplifying to a world where all jobs initially look identical:

Vt (γt ) = max
{
V0,γt + β

∫
Vt+1

(
αγt + (ξ + σε)

α+ 1

)
ft (ξ + σε|γt )

}
where V0 is an arbitrary constant and

α ≡ (σ /δ )2 xt+1 − ψt+1 = ξ + σε

which implies:

αγt + (ξ + σεt+1)

α+ 1
=

δ−2γt + σ−2 (ξ + σεt+1)

δ−2 + σ−2

ξ ∼ N
(
γt , δ

2
t

)
at t and ε ∼ N

(
0, σ2

)
Therefore ft (ξ + σε|γt ) ∼ N

(
γt , δ

2
t + σ2

)
.

Recursively compute to obtain Vt (γ) for different values of V0.
Now solve for V0 = V0(γ).
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Optimization with One Job Type
Simplifying the problem a little further

The realized lifetime utility of the individual is a linear transformation
of the original utility:

∞

∑
t=0

∑
m∈M

βtdmt

(
xmt − γ

σ

)
Applying the Bayesian updating formula recursively:

δt
σ
=

[
δ−2 + tσ−2

]−1/2

σ
=

[(
δ

σ

)−2
+ t

]−1/2

= (α+ t)−1/2

ρt+1 ≡
γt+1 − γ

σ
=

α

1+ α
ρt +

1
1+ α

(
xm,t+1 − γ

σ

)
and (xm,t+1 − γ) /σ ∼ N

(
0, (α+ t)−1 + 1

)
at t.

We can rewrite the value function recursion with a state variable ρt
and three parameters (W0, α, β).

Miller (Structural Econometrics) Discrete Choice 2 September 2017 10 / 19



The Colman-Rossi Data Set
Tenure and turnover by employment and profession
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The Colman-Rossi Data Set
Transitions with and between employment groups
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Probability Distribution of Spell Lengths
Hazard rate for spell length

We define the (discrete) hazard at t periods as the probability a spell
ends after t periods conditional on surviving that long.

In a one occupation model:

ht ≡ Pr
{

γt + δtD
[(σ

δ

)2
+ t, β

]
≤ γ+ δD

[(σ

δ

)2
, β

]}
= Pr

{
γt − γ

σ
≤ δ

σ
D
[(σ

δ

)2
, β

]
− δt

σ
D
[(σ

δ

)2
+ t, β

]}
= Pr

{
ρt ≤ α−1/2D (α, β)− (α+ t)−1/2 D (α+ t, β)

}
where from the Bayesian updating formula on Slide 5:

δt
σ
=

[
δ−2 + tσ−2

]−1/2

σ
=

[(
δ

σ

)−2
+ t

]−1/2

= (α+ t)−1/2
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Probability Distribution of Spell Lengths
Relating the hazard rate to the distribution of normalized match qualities

Define the probability distribution of transformed means of spells
surviving at least t periods as:

Ψt (ρ) ≡ Pr
{

σ−1 (γt − γ) ≤ ρ
}
= Pr {γt ≤ γ+ ρσ}

To help fix ideas note that Ψ0 (ρ) = 0 for all ρ ≤ 0 and Ψ0 (0) = 1.

From the definition of ht and Ψt (ρ):

ht = Pr
{

ρt ≤ α−1/2D (α, β)− (α+ t)−1/2 D (α+ t, β)
}

= Ψt

[
α−1/2D (α, β)− (α+ t)−1/2 D (α+ t, β)

]
To derive the discrete hazard, we recursively compute Ψt (ρ).

Miller (Structural Econometrics) Discrete Choice 2 September 2017 14 / 19



Probability Distribution of Spell Lengths
Recursively computing the distribution of normalized match qualities

By definition every match survives at least one period, and hence:

Ψ1 (ρ) ≡ Pr
{

γ1 − γ

σ
≤ ρ

}
= Φ

[
α1/2 (α+ 1)1/2 ρ

]
The spell ends if:

ρ1 < α−1/2D (α, β)− (α+ 1)−1/2 D (α+ 1, β)

Therefore the proportion of spells ending after one period is:

h1 = Ψ1

[
α−1/2D (α, β)− (α+ 1)−1/2 D (α+ 1, β)

]
> 1/2

So the truncated distribution of ρ for survivors after one draw is:

Ψ̃1 (ρ) ≡ (1− h1)−1 [Ψ1 (ρ)− h1]
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Probability Distribution of Spell Lengths
The distribution of normalized match qualities

To derive Ψ2 (ρ) from Ψ̃1 (ρ) the worker takes another draw, and
appealing to Bayes rule one more time:

Ψ2 (ρ) ≡

∫ ∞
−∞ Ψ1

(
ρ− ε [(α+ 1) (α+ 2)]−1/2

)
dΦ (ε)− h1

1− h1

=

∫ ∞
−∞ Φ

[
α1/2 (α+ 1)1/2 ×(

ρ− ε [(α+ 1) (α+ 2)]−1/2
) ] dΦ (ε)− h1

1− h1

More generally (from page 1112 of Miller, 1984):

Ψt+1 (ρ) ≡

∫ ∞
−∞ Ψt

(
ρ− ε [(α+ t) (α+ t + 1)]−1/2

)
dΦ (ε)− ht

1− ht
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Maximum Likelihood Estimation
Complete and incomplete spells

Suppose the sample comprises a cross section of spells
n ∈ {1, . . . ,N}, some of which are completed after τn periods, and
some of which are incomplete lasting at least τn periods. Let:

ρ (n) ≡
{

τn if spell is complete
{τn, τn+1, . . .} if spell is incomplete

Let pτ (αn, βn) denote the unconditional probability of individual n
with discount factor βn working τ periods in a new job with
information factor αn before switching to another new job in the same
occupation:

pτ (αn, βn) ≡ hτ (αn, βn)∏
τ−1
s=1 [1− hs (αn, βn)]

Then the joint probability of spell duration times observed in the
sample is:

∏N
n=1 ∑τ∈ρ(n)

pτ (αn, βn)
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Maximum Likelihood Estimation
The likelihood function and structural estimates

We could allow for an additional source of unobserved heterogeneity
by writing the likelihood as:

LN (A1,B1,A2,B2,λ) ≡∏N
n=1 ∑τ∈ρ(n)

[
pτ (α1n, β1n) λ
+pτ (α1n, β1n) (1− λ)

]
where we now assume that αin ≡ AiXn and βn ≡ BiXn for i ∈ {1, 2}
and the parameter space is (A1,B1,A2,B2,λ) .

Briefly, the structural estimates show that:
1 individuals care about the future and value on job experimentation;
2 the occupational dummy variables are significant, suggesting that the
choice of different occupations is not random;

3 educational groups have different beliefs and learning rates;
4 these three results are not sensitive to whether the additional
unobserved heterogeneity is incorporated or not.
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Recent Work
Recent studies estimating dynamic discrete choice models with Bayesian learning

There is renewed interest within structural estimation for modeling
Bayesian learning as the Markov process driving the state variables:

1 Pharmaceuticals: Crawford and Shum (2005)
2 Occupational choice: James (2011)
3 Wage contacting: Pastorino (2014)
4 Entrepreneurship: Hincape (2016), Dillon and Stanton (2016).
5 College choices: Arcidiacono, Aucejo, Maurel and Ransom (2016)

Compared to earlier work, recent studies:
draw upon larger samples;
focus more closely on wages and less on nonpecuniary characteristics;
do not necessarily solve the dynamic optimization problem for different
parameter values to estimate the model;
predict the outcomes of counterfactual regimes induced by hypothetical
technical change and alternative public policies;
use similar numerical techniques to this study when solving
optimization problems, both in dynamic theory and in estimation.
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