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Overview of the Course
Course website, topics, themes and assessment

The course material can be found at: comlabgames.com/899/
It is organized around three topics:

1 Dynamic discrete choice
2 Auctions and optimal contracting
3 Market structure

Four methodological themes permeate this course:
1 Summarizing data using economic structure
2 Analyzing empirical content and identification
3 Estimating and testing structural models
4 Conducting counterfactuals

Your grades will come from:
1 Three assignments (10 percent each)
2 Presentation to class of published work (20 percent)
3 Midterm in-class test on lecture material (20 percent)
4 Final examination on lecture and reading material (30 percent)
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Dynamic Discrete Choice
Choices

Each period t ∈ {1, 2, . . . ,T} for T ≤ ∞, an individual chooses
among J mutually exclusive actions.

Let djt equal one if action j ∈ {1, . . . , J} is taken at time t and zero
otherwise:

djt ∈ {0, 1}
J

∑
j=1
djt = 1

At an abstract level assuming that choices are mutually exclusive is
innocuous, because two combinations of choices sharing some
features but not others can be interpreted as two different choices.

For example in a female labor supply and fertility model, suppose:

j ∈ {(work, no birth) , (work, birth) , (no work, no birth) , (no work, birth)}
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Dynamic Discrete Choice
Information and states

Suppose that actions taken at time t can potentially depend on the
state zt ∈ Z .
For Z finite denote by fjt (zt+1|zt ), the probability of zt+1 occurring in
period t + 1 when action j is taken at time t.
For example in the example above, suppose zt = (wt , kt ) where:

kt ∈ {0, 1, . . .} are the number of births before t
wt ≡ d1,t−1 + d2,t−1, so wt = 1 if the female worked in period t − 1,
and wt = 0 otherwise.

Note that Z must be defined compatible to the transition matrix: for
example setting zt = (wt , kt ) where kt ∈ {0, 1, . . .} are the number
of births before t − 1, is incompatible with assumption about
transitions and choices.
With up to 5 offspring, 3 levels of experience, the number of states
including age (say 50 years) is 750. Add in 4 levels of education (less
than high school, high school, some college and college graduate) and
3 racial categories, increases this number to 7800.
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Dynamic Discrete Choice
More on information and states

When Z is finite there is a Z × Z transition matrix for each (j , t).
In the example above, the matrices are of dimension 180 but very
sparse; only 180 elements are nonzero and all the nonzero elements
are one.

Given a deterministic sequence of actions sequentially taken over S
periods, we form the S period transition matrix by producting the one
period transitions.

If Z is a Euclidean space fjt (zt+1|zt ) is the probability (density
function) of zt+1 occurring in period t + 1 when j is picked at time t.

With almost identical notation we could model zt ∈ Zt and in this
way generalize from states of the world to histories, or information
known at t, or t-measurable events.

For example in a health application we might define zt ≡ {hs}t−1s=1 as
a medical record with hs ∈ {healthy at s, sick at s}.
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Dynamic Discrete Choice Models
Preferences and expected utility

The individual’s current period payoff from choosing j at time t is
determined by zt , which is revealed to the individual at the beginning
of the period t.
The current period payoff at time t from taking action j is ujt (zt ).
Given choices (d1t , . . . , dJt ) in each period t ∈ {1, 2, . . . ,T} the
individual’s expected utility is:

E

{
T

∑
t=1

J

∑
j=1

βt−1djtujt (zt )

}

where β ∈ (0, 1) is the subjective discount factor, and at each period
t the expectation is taken over zt+1, . . . , zT .
Formally β is redundant if u is subscripted by t; we typically include a
geometric discount factor so that infinite sums of utility are bounded,
and the optimization problem is well posed.
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Dynamic Discrete Choice Models
Value Function

Write the optimal decision at period t as a decision rule denoted by
dot (z) formed from its elements dojt (zt ).

Let Vt (zt ) denote the value function in period t, conditional on
behaving according to the optimal decision rule:

Vt (zt ) ≡ E
[
T

∑
τ=t

J

∑
j=1

βτ−tdojτ (zτ) ujτ(zτ)

]

In terms of period t + 1:

βVt+1(zt+1) ≡ βE

{
T

∑
τ=t+1

J

∑
j=1

βτ−t−1dojτ (zτ) ujτ(zτ)

}
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Dynamic Discrete Choice Models
Recursive Representation

Appealing to Bellman’s (1958) principle we obtain:

Vt (zt ) =
J

∑
j=1
dojtujt (zt )

+
J

∑
j=1
dojt

Z

∑
z=1

E

{
T

∑
τ=t+1

J

∑
j=1

βτ−tdojτ (zτ) ujτ(zτ) |z
}
fjt (z |zt )

=
J

∑
j=1
dojt

[
ujt (zt ) + β

Z

∑
z=1

Vt+1(z)fjt (z |zt )
]

when Z is finite with a similar expression holding (using an integral)
when Z is Euclidean.
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Dynamic Discrete Choice Models
Optimization

To compute the optimum for T finite, we first solve a static problem
in the last period to obtain doT (z).

Applying backwards induction i ∈ {1, . . . , J} is chosen to maximize:

uit (zt ) + E

{
T

∑
τ=t+1

J

∑
j=1

βτ−t−1dojτ (zτ) ujτ(zτ) |zt , dit = 1
}

In the stationary infinite horizon case we assume ujt (z) ≡ uj (z) and
that uj (z) < ∞ for all (j , z).

Consequently expected utility each period is bounded and the
contraction mapping theorem applies, proving dot (z)→ do (z) for
large T .
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Inference
Fitting and testing a model in the absence of unobserved heterogeneity

Let vjt (zt ) denote the flow payoff of action j plus the expected future
utility of behaving optimally from period t + 1 on:

vjt (zt ) ≡ ujt (zt ) + β
Z

∑
zt+1=1

Vt+1(zt+1)fjt (zt+1|zt )

By definition:

dojt (zt ) ≡ I {vjt (zt ) ≥ vkt (zt )∀ k}
Suppose we observe the states znt and decisions dnt of individuals
n ∈ {1, . . . ,N} over time periods t ∈ {1, . . . ,T} .
If two people with the same zt made different decisions, say j and k,
then vjt (zt ) = vkt (zt ).
Such equalities imply that large data sets typically impose many
restrictions on ujt (zt ), fjt (zt+1|zt ) and β.
Can they all be satisfied in a finite data set without rejecting a model
that has empirical content?
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Inference
Unobserved heterogeneity

A more modest objective is to predict the probability distribution of
choices margined over factors that individuals observe, but data
analysts do not.

In this respect we seek to predict the behavior of a population, not
each individual, essentially obliterating that difference between
macroeconomics and microeconomics.

We now assume the states can be partitioned into those which are
observed, xt , and those that are not, εt .

Thus zt ≡ (xt , εt ) .
Suppose the data consist of N independent and identically distributed
draws from the string of random variables (X1,D1, . . . ,XT ,DT ).

The nth observation is given by
{
x (n)1 , d (n)1 , . . . , x (n)T , d (n)T

}
for

n ∈ {1, . . . ,N}.
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Inference
Data generating process

Denote the probability (density) of the pair (xt+1, εt+1), conditional

on
(
x (n)t , εt

)
and the optimal action taken by n at t, as:

Hnt
(
xt+1, εt+1

∣∣∣x (n)t , εt
)
≡

J

∑
j=1
I
{
d (n)jt = 1

}
dojt
(
x (n)t , εt

)
fjt
(
xt+1, εt+1

∣∣∣x (n)t , εt
)

Conditional on x (n)1 the joint probability of
{
d (n)1 , x (n)2 , . . . , x (n)T , d (n)T

}
is:

Pr
{
d (n)1 , x (n)2 , . . . , x (n)T , d (n)T

∣∣∣x (n)1 }
=

∫
εT

. . .
∫
ε1


J
∑
j=1
I
{
d (n)jT = 1

}
dojT
(
x (n)T , εT

)
×

T−1
∏
t=1

Hnt
(
x (n)t+1, εt+1

∣∣∣x (n)t , εt
)
g
(

ε1

∣∣∣x (n)1 )
 dε1 . . . dεT
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Inference
Maximum Likelihood Estimation

Let θ ∈ Θ uniquely index a specification of ujt (zt ), fjt (zt+1|zt ) and β
under consideration.

Conditional on x (n)1 suppose
{
d (n)1 , x (n)2 , . . . , , d (n)T

}N
n=1

was generated

by θ0 ∈ Θ.
Define ε ≡ (ε1, . . . , εT ) . The maximum likelihood estimator, θML,
selects θ ∈ Θ to maximize the joint probability of the observed
occurrences conditional on the initial conditions:

θML ≡ argmax
θ∈Θ

{
N−1

N

∑
n=1

log
(
Pr
{
d (n)1 , x (n)2 , . . . , x (n)T , d (n)T

∣∣∣x (n)1 ; θ
})}

If there is a unique maximum in θ ∈ Θ to:∫
x (n)1
log
(
Pr
{
d (n)1 , x (n)2 , . . . , x (n)T , d (n)T

∣∣∣x (n)1 ; θ
})
dF
(
x (n)1

)
then the model is identified, and under standard conditions θML is√
N consistent, asymptotically normal, and effi cient.
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