Introduction

Robert A. Miller
Structural Econometrics

September 2017

Overview of the Course

Course website, topics, themes and assessment

- The course material can be found at: comlabgames.com/899/
- It is organized around three topics:
(1) Dynamic discrete choice
(2) Auctions and optimal contracting
(3) Market structure
- Four methodological themes permeate this course:
(1) Summarizing data using economic structure
(2) Analyzing empirical content and identification
(3) Estimating and testing structural models
(9) Conducting counterfactuals
- Your grades will come from:
(1) Three assignments (10 percent each)
(2) Presentation to class of published work (20 percent)
(3) Midterm in-class test on lecture material (20 percent)
(1) Final examination on lecture and reading material (30 percent)

Dynamic Discrete Choice

Choices

- Each period $t \in\{1,2, \ldots, T\}$ for $T \leq \infty$, an individual chooses among J mutually exclusive actions.
- Let $d_{j t}$ equal one if action $j \in\{1, \ldots, J\}$ is taken at time t and zero otherwise:

$$
\begin{aligned}
& d_{j t} \in\{0,1\} \\
& \sum_{j=1}^{J} d_{j t}=1
\end{aligned}
$$

- At an abstract level assuming that choices are mutually exclusive is innocuous, because two combinations of choices sharing some features but not others can be interpreted as two different choices.
- For example in a female labor supply and fertility model, suppose:
$j \in\{($ work, no birth $),($ work, birth $),($ no work, no birth $),($ no work, birth $)\}$

Dynamic Discrete Choice

Information and states

- Suppose that actions taken at time t can potentially depend on the state $z_{t} \in Z$.
- For Z finite denote by $f_{j t}\left(z_{t+1} \mid z_{t}\right)$, the probability of z_{t+1} occurring in period $t+1$ when action j is taken at time t.
- For example in the example above, suppose $z_{t}=\left(w_{t}, k_{t}\right)$ where:
- $k_{t} \in\{0,1, \ldots\}$ are the number of births before t
- $w_{t} \equiv d_{1, t-1}+d_{2, t-1}$, so $w_{t}=1$ if the female worked in period $t-1$, and $w_{t}=0$ otherwise.
- Note that Z must be defined compatible to the transition matrix: for example setting $z_{t}=\left(w_{t}, k_{t}\right)$ where $k_{t} \in\{0,1, \ldots\}$ are the number of births before $t-1$, is incompatible with assumption about transitions and choices.
- With up to 5 offspring, 3 levels of experience, the number of states including age (say 50 years) is 750 . Add in 4 levels of education (less than high school, high school, some college and college graduate) and 3 racial categories, increases this number to 7800 .

Dynamic Discrete Choice

More on information and states

- When Z is finite there is a $Z \times Z$ transition matrix for each (j, t).
- In the example above, the matrices are of dimension 180 but very sparse; only 180 elements are nonzero and all the nonzero elements are one.
- Given a deterministic sequence of actions sequentially taken over S periods, we form the S period transition matrix by producting the one period transitions.
- If Z is a Euclidean space $f_{j t}\left(z_{t+1} \mid z_{t}\right)$ is the probability (density function) of z_{t+1} occurring in period $t+1$ when j is picked at time t.
- With almost identical notation we could model $z_{t} \in Z_{t}$ and in this way generalize from states of the world to histories, or information known at t, or t-measurable events.
- For example in a health application we might define $z_{t} \equiv\left\{h_{s}\right\}_{s=1}^{t-1}$ as a medical record with $h_{s} \in\{$ healthy at s, sick at $s\}$.

Dynamic Discrete Choice Models

Preferences and expected utility

- The individual's current period payoff from choosing j at time t is determined by z_{t}, which is revealed to the individual at the beginning of the period t.
- The current period payoff at time t from taking action j is $u_{j t}\left(z_{t}\right)$.
- Given choices $\left(d_{1 t}, \ldots, d_{J t}\right)$ in each period $t \in\{1,2, \ldots, T\}$ the individual's expected utility is:

$$
E\left\{\sum_{t=1}^{T} \sum_{j=1}^{J} \beta^{t-1} d_{j t} u_{j t}\left(z_{t}\right)\right\}
$$

where $\beta \in(0,1)$ is the subjective discount factor, and at each period t the expectation is taken over z_{t+1}, \ldots, z_{T}.

- Formally β is redundant if u is subscripted by t; we typically include a geometric discount factor so that infinite sums of utility are bounded, and the optimization problem is well posed.

Dynamic Discrete Choice Models

Value Function

- Write the optimal decision at period t as a decision rule denoted by $d_{t}^{o}(z)$ formed from its elements $d_{j t}^{o}\left(z_{t}\right)$.
- Let $V_{t}\left(z_{t}\right)$ denote the value function in period t, conditional on behaving according to the optimal decision rule:

$$
V_{t}\left(z_{t}\right) \equiv E\left[\sum_{\tau=t}^{T} \sum_{j=1}^{J} \beta^{\tau-t} d_{j \tau}^{o}\left(z_{\tau}\right) u_{j \tau}\left(z_{\tau}\right)\right]
$$

- In terms of period $t+1$:

$$
\beta V_{t+1}\left(z_{t+1}\right) \equiv \beta E\left\{\sum_{\tau=t+1}^{T} \sum_{j=1}^{J} \beta^{\tau-t-1} d_{j \tau}^{o}\left(z_{\tau}\right) u_{j \tau}\left(z_{\tau}\right)\right\}
$$

Dynamic Discrete Choice Models

- Appealing to Bellman's (1958) principle we obtain:

$$
\begin{aligned}
V_{t}\left(z_{t}\right)= & \sum_{j=1}^{J} d_{j t}^{o} u_{j t}\left(z_{t}\right) \\
& +\sum_{j=1}^{J} d_{j t}^{o} \sum_{z=1}^{Z} E\left\{\sum_{\tau=t+1}^{T} \sum_{j=1}^{J} \beta^{\tau-t} d_{j \tau}^{o}\left(z_{\tau}\right) u_{j \tau}\left(z_{\tau}\right) \mid z\right\} f_{j t}\left(z \mid z_{t}\right) \\
= & \sum_{j=1}^{J} d_{j t}^{o}\left[u_{j t}\left(z_{t}\right)+\beta \sum_{z=1}^{Z} V_{t+1}(z) f_{j t}\left(z \mid z_{t}\right)\right]
\end{aligned}
$$

when Z is finite with a similar expression holding (using an integral) when Z is Euclidean.

Dynamic Discrete Choice Models Optimization

- To compute the optimum for T finite, we first solve a static problem in the last period to obtain $d_{T}^{\circ}(z)$.
- Applying backwards induction $i \in\{1, \ldots, J\}$ is chosen to maximize:

$$
u_{i t}\left(z_{t}\right)+E\left\{\sum_{\tau=t+1}^{T} \sum_{j=1}^{J} \beta^{\tau-t-1} d_{j \tau}^{o}\left(z_{\tau}\right) u_{j \tau}\left(z_{\tau}\right) \mid z_{t}, d_{i t}=1\right\}
$$

- In the stationary infinite horizon case we assume $u_{j t}(z) \equiv u_{j}(z)$ and that $u_{j}(z)<\infty$ for all (j, z).
- Consequently expected utility each period is bounded and the contraction mapping theorem applies, proving $d_{t}^{\circ}(z) \rightarrow d^{\circ}(z)$ for large T.

Inference

Fitting and testing a model in the absence of unobserved heterogeneity

- Let $v_{j t}\left(z_{t}\right)$ denote the flow payoff of action j plus the expected future utility of behaving optimally from period $t+1$ on:

$$
v_{j t}\left(z_{t}\right) \equiv u_{j t}\left(z_{t}\right)+\beta \sum_{z_{t+1}=1}^{Z} V_{t+1}\left(z_{t+1}\right) f_{j t}\left(z_{t+1} \mid z_{t}\right)
$$

- By definition:

$$
d_{j t}^{o}\left(z_{t}\right) \equiv l\left\{v_{j t}\left(z_{t}\right) \geq v_{k t}\left(z_{t}\right) \forall k\right\}
$$

- Suppose we observe the states $z_{n t}$ and decisions $d_{n t}$ of individuals $n \in\{1, \ldots, N\}$ over time periods $t \in\{1, \ldots, T\}$.
- If two people with the same z_{t} made different decisions, say j and k, then $v_{j t}\left(z_{t}\right)=v_{k t}\left(z_{t}\right)$.
- Such equalities imply that large data sets typically impose many restrictions on $u_{j t}\left(z_{t}\right), f_{j t}\left(z_{t+1} \mid z_{t}\right)$ and β.
- Can they all be satisfied in a finite data set without rejecting a model that has empirical content?

Inference

Unobserved heterogeneity

- A more modest objective is to predict the probability distribution of choices margined over factors that individuals observe, but data analysts do not.
- In this respect we seek to predict the behavior of a population, not each individual, essentially obliterating that difference between macroeconomics and microeconomics.
- We now assume the states can be partitioned into those which are observed, x_{t}, and those that are not, ϵ_{t}.
- Thus $z_{t} \equiv\left(x_{t}, \epsilon_{t}\right)$.
- Suppose the data consist of N independent and identically distributed draws from the string of random variables $\left(X_{1}, D_{1}, \ldots, X_{T}, D_{T}\right)$.
- The $n^{\text {th }}$ observation is given by $\left\{x_{1}^{(n)}, d_{1}^{(n)}, \ldots, x_{T}^{(n)}, d_{T}^{(n)}\right\}$ for $n \in\{1, \ldots, N\}$.

Inference

Data generating process

- Denote the probability (density) of the pair $\left(x_{t+1}, \epsilon_{t+1}\right)$, conditional on $\left(x_{t}^{(n)}, \epsilon_{t}\right)$ and the optimal action taken by n at t, as:

$$
\begin{aligned}
& H_{n t}\left(x_{t+1}, \epsilon_{t+1} \mid x_{t}^{(n)}, \epsilon_{t}\right) \equiv \\
& \sum_{j=1}^{J} I\left\{d_{j t}^{(n)}=1\right\} d_{j t}^{\circ}\left(x_{t}^{(n)}, \epsilon_{t}\right) f_{j t}\left(x_{t+1}, \epsilon_{t+1} \mid x_{t}^{(n)}, \epsilon_{t}\right)
\end{aligned}
$$

- Conditional on $x_{1}^{(n)}$ the joint probability of $\left\{d_{1}^{(n)}, x_{2}^{(n)}, \ldots, x_{T}^{(n)}, d_{T}^{(n)}\right\}$ is:

$$
\begin{aligned}
& \operatorname{Pr}\left\{d_{1}^{(n)}, x_{2}^{(n)}, \ldots, x_{T}^{(n)}, d_{T}^{(n)} \mid x_{1}^{(n)}\right\}= \\
& \int_{\epsilon_{T}} \ldots \int_{\epsilon_{1}}\left[\begin{array}{l}
\sum_{j=1}^{J} l\left\{d_{j T}^{(n)}=1\right\} d_{j T}^{o}\left(x_{T}^{(n)}, \epsilon_{T}\right) \times \\
\left.\prod_{t=1}^{T-1} H_{n t}\left(x_{t+1}^{(n)}, \epsilon_{t+1} \mid x_{t}^{(n)}, \epsilon_{t}\right) g\left(\epsilon_{1} \mid x_{1}^{(n)}\right)\right] d \epsilon_{1} \ldots d \epsilon_{T}
\end{array}\right]
\end{aligned}
$$

Inference

Maximum Likelihood Estimation

- Let $\theta \in \Theta$ uniquely index a specification of $u_{j t}\left(z_{t}\right), f_{j t}\left(z_{t+1} \mid z_{t}\right)$ and β under consideration.
- Conditional on $x_{1}^{(n)}$ suppose $\left\{d_{1}^{(n)}, x_{2}^{(n)}, \ldots, d_{T}^{(n)}\right\}_{n=1}^{N}$ was generated by $\theta_{0} \in \Theta$.
- Define $\epsilon \equiv\left(\epsilon_{1}, \ldots, \epsilon_{T}\right)$. The maximum likelihood estimator, $\theta_{M L}$, selects $\theta \in \Theta$ to maximize the joint probability of the observed occurrences conditional on the initial conditions:

$$
\theta_{M L} \equiv \underset{\theta \in \Theta}{\arg \max }\left\{N^{-1} \sum_{n=1}^{N} \log \left(\operatorname{Pr}\left\{d_{1}^{(n)}, x_{2}^{(n)}, \ldots, x_{T}^{(n)}, d_{T}^{(n)} \mid x_{1}^{(n)} ; \theta\right\}\right)\right\}
$$

- If there is a unique maximum in $\theta \in \Theta$ to:

$$
\int_{x_{1}^{(n)}} \log \left(\operatorname{Pr}\left\{d_{1}^{(n)}, x_{2}^{(n)}, \ldots, x_{T}^{(n)}, d_{T}^{(n)} \mid x_{1}^{(n)} ; \theta\right\}\right) d F\left(x_{1}^{(n)}\right)
$$

then the model is identified, and under standard conditions $\theta_{M L}$ is
\sqrt{N} consistent, asymptotically normal, and efficient,

