Human Capital and Nonseparable Preferences

Robert A. Miller
Structural Econometrics

December 2017

Nonseparabilities over time

Competitive equilibrium

- Panel data reject the joint null hypothesis that:
(1) consumer workers maximize expected utility.
(2) they have rational expectations.
(3) the disturbance structure is iid.
(9) current utility is CRRA.
(3) current utility is additively separable within and between periods.
(0) goods and labor productivity are additively separable over time.
((here are complete markets.
- There is less consensus on which of these factors is instrumental:
- Some economists believe 7 fails.
- Others believe 3 through 7 cause the rejections.
- There are those who believe consumers violate 1 and/or 2.
- The remainder of the course focuses on the failure of complete markets and the incorporation of nonseparable preferences.
- In both cases we justify the extensions with evidence from the data.

Female Wages

Value of marginal product of labor

- Female labor supply receives much more attention than male labor supply from labor economists.
- There are two main reasons. Female labor supply:
(1) exhibits much more variation than male labor supply.
(2) is significantly correlated with variables observed typically observed in panel data (such as household composition and education).
- One noticeable feature of female wage data is that past labor supply decisions significantly and quantitatively affect their current wages.
- This form of human capital accumulation induces nonseparabilities over time within the production function.

Female Wages

Wage equation (Altug and Miller,1998)

- Suppose:

$$
\widetilde{w}_{n t} \equiv w_{n t} \exp \left(\varepsilon_{3 n t}\right)
$$

and:

$$
w_{n t} \equiv w_{t} v_{n} \exp \left[x_{n t} B_{3}+\sum_{s=1}^{\rho}\left(\gamma_{1 s} l_{n, t-s}+\gamma_{2 s} d_{n, t-s}\right)\right]
$$

where:

- $\widetilde{w}_{n t}$ measured wage rate of n at t
- $w_{n t}$ wage rate of n at t
- $\varepsilon_{3 n t}$ iid measurement error
- w_{t} wage rate for standardized unit of labor
- v_{n} household specific fixed effect
- $x_{n t}$ time varying socioeconomic factors
- $I_{n t} \in[0,1]$ normalized labor time
- $d_{n t}=\left\{\begin{array}{l}0 \text { if } I_{n t}=0 \\ 1 \text { if } I_{n t}>0\end{array}\right.$

Female Wages

Estimates from the PSID (Table III, Altug and Miller, 1998)

The wage equation $\dagger$$\ln \left(w_{n t}\right)=\ln \left(\omega_{i}\right)+\ln \left(v_{n}\right)+\sum_{s-1}^{p}\left(\gamma_{1 v} l_{n, t-x}+\gamma_{2 x} d_{n, t-s}\right)+x_{n \prime}^{\prime} B_{3}$						
Variable	Parameter	(i) Estimate	(ii) Estimate	Variable	(i) Estimate	(ii) Estimate
Lags of hours worked				Aggregate wa		
$\Delta l_{n, t-1}$	γ_{11}	$\begin{aligned} & 0.0002 \\ & (0.00001) \end{aligned}$	$\begin{aligned} & 0.0002 \\ & (0.5 \mathrm{E}-5) \end{aligned}$	$\Delta \ln \left(\omega_{7}\right)$	-	$\begin{gathered} 0.045 \\ (0.016) \end{gathered}$
$\Delta l_{n, t-2}$	γ_{12}	$\begin{aligned} & 0.0001 \\ & (0.00001) \end{aligned}$	$\begin{aligned} & 0.0001 \\ & (0.000006) \end{aligned}$	$\Delta \ln \left(\omega_{8}\right)$	-	$\begin{gathered} -0.003 \\ (0.021) \end{gathered}$
$\Delta l_{n, t-3}$	γ_{13}	$\begin{gathered} 0.00008 \\ (0.00001) \end{gathered}$	$\begin{aligned} & 0.00006 \\ & (0.000006) \end{aligned}$	$\Delta \ln \left(\omega_{9}\right)$	$\begin{gathered} -0.013 \\ (0.022) \end{gathered}$	$\begin{gathered} -0.038 \\ (0.011) \end{gathered}$
$\Delta l_{n, t-4}$	γ_{14}	$\begin{gathered} 0.00006 \\ (0.00001) \end{gathered}$	$\begin{aligned} & 0.00005 \\ & (0.000005) \end{aligned}$	$\Delta \ln \left(\omega_{10}\right)$	$\begin{gathered} -0.04 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.02 \\ (0.01) \end{gathered}$
$\Delta l_{n, t-s}$	γ_{15}	$\begin{gathered} 0.00002 \\ (0.00001) \end{gathered}$	-	$\Delta \ln \left(\omega_{11}\right)$	$\begin{gathered} 0.11 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.074 \\ (0.01) \end{gathered}$
$\Delta I_{n, t-6}$	γ_{16}	$\begin{gathered} 0.00002 \\ (0.00001) \end{gathered}$	-	$\Delta \ln \left(\omega_{12}\right)$	$\begin{gathered} 0.05 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.02) \end{gathered}$
Lags of participation				$\Delta \ln \left(\omega_{13}\right)$	$\begin{gathered} 0.05 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.02 \\ (0.01) \end{gathered}$
$\Delta d_{n, t-1}$	γ_{21}	$\begin{aligned} & -0.11 \\ & (0.021) \end{aligned}$	$\begin{gathered} -0.09 \\ (0.01) \end{gathered}$	$\Delta \ln \left(\omega_{14}\right)$	$\begin{gathered} -0.01 \\ (0.02) \end{gathered}$	$\begin{gathered} -0.03 \\ (0.01) \end{gathered}$
$\Delta d_{n, t-2}$	γ_{22}	$\begin{aligned} & -0.10 \\ & (0.021) \end{aligned}$	$\begin{gathered} -0.07 \\ (0.01) \end{gathered}$	$\Delta \ln \left(\omega_{15}\right)$	$\begin{gathered} 0.05 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.02 \\ (0.01) \end{gathered}$
$\Delta d_{n, t-3}$	γ_{23}	$\begin{gathered} -0 \cdot 10 \\ (0.02) \end{gathered}$	$\begin{gathered} -0.09 \\ (0.01) \end{gathered}$	$\Delta \ln \left(\omega_{16}\right)$	$\begin{gathered} -0.02 \\ (0.02) \end{gathered}$	$\begin{gathered} -0.01 \\ (0.01) \end{gathered}$
$\Delta I_{m, t-4}$	γ_{24}	$\begin{gathered} -0.10 \\ (0.02) \end{gathered}$	$\begin{gathered} -0.07 \\ (0.01) \end{gathered}$	$\Delta \ln \left(\omega_{17}\right)$	$\begin{gathered} 0.07 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.04 \\ (0.01) \end{gathered}$
$\Delta d_{n, t-5}$	γ_{25}	$\begin{gathered} -0.05 \\ (0.02) \end{gathered}$	-	$\Delta \ln \left(\omega_{18}\right)$	$\begin{gathered} -0.01 \\ (0.02) \end{gathered}$	$\begin{gathered} -0.02 \\ (0.01) \end{gathered}$
$\Delta d_{n, t-6}$	γ_{26}	$\begin{gathered} -0.03 \\ (0.02) \end{gathered}$	-	$\Delta \ln \left(\omega_{19}\right)$	$\begin{gathered} 0.082 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.05 \\ (0.02) \end{gathered}$
Socioeconomic variables						
$\Delta \mathrm{AGE}_{n}{ }^{2}$	B_{31}	$\begin{gathered} -0.0005 \\ (0.0001) \end{gathered}$	$\begin{aligned} & -0.0002 \\ & (0.00005) \end{aligned}$			
$\Delta\left(\mathrm{AGE}_{m t} \times \mathrm{EDU}_{m t}\right)$	B_{32}	$\begin{gathered} 0.0001 \\ (0.0004) \end{gathered}$	$\begin{gathered} 0.0002 \\ (0.0001) \end{gathered}$			

\dagger Standard errors in parentheses.

A Social Planner's Problem

Preferences and resource constraint

- Suppose individual n is uniformly distributed on $[0,1]$ with current consumption $c_{n t}$ and current utility:

$$
\begin{aligned}
U_{n t}= & \left(1-d_{n t}\right)\left(x_{n t} B_{0}+\varepsilon_{0 n t}\right)+d_{n t} \varepsilon_{1 n t} \\
& +\alpha^{-1} c_{n t}^{\alpha} \exp \left[x_{n t} B_{2}+\varepsilon_{2 n t}\right]+\left[x_{n t} B_{1}+\sum_{s=0}^{\rho} \delta_{s} I_{n, t-s}\right] I_{n t}
\end{aligned}
$$

- Aggregate consumption cannot exceed aggregate income, comprising aggregate wages and aggregate nonlabor income, e_{t} :

$$
\int_{0}^{1} c_{n t} d n \leq e_{t}+\int_{0}^{1} w_{n t} l_{n t} d n
$$

- The planner's preferences are given by:

$$
E_{0}\left\{\sum_{t=0}^{\infty} \beta^{t}\left[\int_{0}^{1} \eta_{n}^{-1} U_{n t} d n\right]\right\}
$$

where β is a subjective discount factor, and η_{n} is the marginal utility of wealth for n in the corresponding competitive equilibrium.

A Social Planner's Problem

First order conditions

- Let λ_{t} denote the Lagrange multiplier associated with the aggregate resource constraint.
- The log of the FOC for consumption is then:

$$
(\alpha-1) \ln c_{n t}+\left(x_{n t} B_{2}+\varepsilon_{2 n t}\right)=\ln \eta_{n}+\ln \lambda_{t}
$$

- Similarly the interior FOC for leisure can be expressed as:

$$
\begin{aligned}
0= & x_{n t} B_{1}+2 \delta_{0} I_{n t}^{o}+\sum_{s=1}^{\rho} \delta_{s} I_{n, t-s}+\eta_{n} \lambda_{t} w_{n t} \\
& +\sum_{s=1}^{\rho} E_{t}\left[\left(\delta_{s}+\gamma_{1 s} \eta_{n} \lambda_{t+s} w_{n, t+s}\right) I_{n, t+s}^{o}| |_{n t}^{o}\right]
\end{aligned}
$$

where we draw on the parameterization of utility and productivity, which imply:

$$
\begin{gathered}
\frac{\partial}{\partial I_{n t}} U_{n, t+s}=\delta_{s} I_{n, t+s} \\
\frac{\partial}{\partial I_{n t}} \eta_{n} \lambda_{t+s} w_{n, t+s} I_{n, t+s}=\gamma_{1 s} \eta_{n} \lambda_{t+s} w_{n, t+s} I_{n, t+s}
\end{gathered}
$$

A Social Planner's Problem

Partitioning the social planner's problem

- Noting the preferences for consumption and leisure are additively separable, the planner:
(1) chooses $c_{n t}$ for all (n, t) to maximize:

$$
E_{0}\left\{\alpha^{-1} \sum_{t=0}^{\infty} \beta^{t}\left[\int_{0}^{1} \eta_{n}^{-1} c_{n t}^{\alpha} \exp \left[x_{n t} B_{2}+\varepsilon_{2 n t}\right] d n\right]\right\}
$$

subject to the budget constraints for each t :

$$
\int_{0}^{1} c_{n t} d n \leq e_{t}^{\prime} \equiv e_{t}+\int_{0}^{1} w_{n t} l_{n t}^{o} d n
$$

(2) chooses $I_{n t}$ for all (n, t) to maximize:

$$
E_{0}\left\{\sum_{t=0}^{\infty} \beta^{t}\left[\begin{array}{l}
\left(1-d_{n t}\right)\left(x_{n t} B_{0}+\varepsilon_{0 n t}\right)+d_{n t} \varepsilon_{1 n t} \\
+x_{n t} B_{1} I_{n t}+\sum_{s=0}^{\rho} \delta_{s} I_{n, t-s} I_{n t}+\eta_{n} \lambda_{t} w_{n t} I_{n t}
\end{array}\right]\right\}
$$

where λ_{t} is the Lagrange multiplier associated with the aggregate resource constraint for the consumption allocation problem.

A Social Planner's Problem

Optimal participation

- The exante value function for the labor supply problem of n at t is:

$$
\begin{aligned}
& V\left(I_{n, t-s}, \ldots, I_{n, t-1}, x_{n t}, \lambda_{t} w_{t}, \eta_{n}\right) \\
= & E_{t}\left\{\sum_{r=t}^{\infty} \beta^{r-t}\left[\begin{array}{l}
\left(1-d_{n r}\right) \varepsilon_{0 n r}+d_{n r}\left(x_{n r} B_{0}+\varepsilon_{1 n r}\right) \\
+x_{n r} B_{1} I_{n r}^{o}+\sum_{s=0}^{o} \delta_{s} I_{n, r-s}^{o} I_{n r}^{o}+\eta_{n} \lambda_{t} w_{n r} I_{n r}^{o}
\end{array}\right]\right\}
\end{aligned}
$$

and denote the associated conditional value functions by:

$$
\begin{aligned}
v_{0 n t}= & x_{n t} B_{0}+\int\left[\begin{array}{c}
V\left(I_{n, t-s+1}, \ldots, 0, x_{n, t+1}, \lambda_{t+1} w_{t+1}, \eta_{n}\right) \\
\times d F\left(x_{n, t+1}, \lambda_{t+1} w_{t+1} \mid x_{n t}, \lambda_{t} w_{t}\right)
\end{array}\right] \\
v_{1 n t}= & {\left[\begin{array}{c}
\left.x_{n t} B_{1}+\eta_{n} \lambda_{t} w_{n t}+\sum_{s=0}^{\rho} \delta_{s} I_{n, t-s}\right] I_{n t}^{o} \\
\\
\end{array}+\int\left[\begin{array}{c}
V\left(I_{n, t-s+1}, \ldots, I_{n t}^{o}, x_{n, t+1}, \lambda_{t+1} w_{t+1}, \eta_{n}\right) \\
\times d F\left(x_{n, t+1}, \lambda_{t+1} \mid x_{n t}, \lambda_{t} w_{t}\right)
\end{array}\right]\right.}
\end{aligned}
$$

- Then optimal participation is given by:

$$
d_{n t}=\left\{\begin{array}{l}
0 \text { if } v_{1 n t}+\varepsilon_{1 n t} \leq v_{0 n t}+\varepsilon_{0 n t} \\
1 \text { if } v_{1 n t}+\varepsilon_{1 n t}>v_{0 n t}+\varepsilon_{0 n t}
\end{array}\right.
$$

A Representation of the Value Function

Telescoping forwards using the nonparticipation choice

- Denote the conditional choice probability of participation by:

$$
p_{n t}=E_{t}\left[d_{n t} \mid I_{n, t-s}, \ldots, I_{n, t-1}, x_{n t}, \eta_{n} \lambda_{t} w_{t}\right]
$$

- Suppressing the arguments $\left(I_{n, t-s}, \ldots, I_{n, t-1}, x_{n t}, \eta_{n} \lambda_{t} w_{t}\right)$, previous lectures on discrete choice proved:

$$
\begin{aligned}
V_{n t} & =\psi_{0}\left(p_{n t}\right)+v_{0 n t} \\
& =\psi_{0}\left(p_{n t}\right)+x_{n t} B_{1}+E_{t}\left[V_{n, t+1} \mid d_{n t}=0\right]
\end{aligned}
$$

- Telescoping forwards:

$$
\begin{aligned}
V_{n t}= & \psi_{0}\left(p_{n t}\right)+x_{n t} B_{1}+E_{t}\left[\psi_{0}\left(p_{n, t+1}\right)+x_{n, t+1} B_{1} \mid d_{n t}=0\right] \\
& +E_{t}\left[V_{n, t+2} \mid d_{n t}=0, d_{n, t+1}=0\right] \\
= & \sum_{s=0}^{\rho} E_{t}\left[\psi_{0}\left(p_{n, t+s}\right)+x_{n, t+s} B_{1} \mid d_{n t}=0, \ldots, d_{n, t+s}=0\right] \\
& +E_{t}\left[V_{n, t+\rho+1} \mid d_{n, t+1}=0, \ldots, d_{n, t+\rho}=0\right]
\end{aligned}
$$

A Representation of the Value Function

Finite dependence

- Since:

$$
\psi_{0}\left(p_{n t}\right)-\psi_{1}\left(p_{n t}\right)=v_{1 n t}-v_{0 n t}
$$

it now follows that:

$$
\begin{align*}
& \psi_{0}\left(p_{n t}\right)-\psi_{1}\left(p_{n t}\right) \tag{1}\\
= & {\left[x_{n t} B_{1}+\eta_{n} \lambda_{t} w_{n t}+\sum_{s=0}^{\rho} \delta_{s} I_{n, t-s}\right] I_{n t}^{o}-x_{n t} B_{0} } \\
& +E_{t}\left[V_{n, t+1} \mid d_{n t}=0\right]-E_{t}\left[V_{n, t+1} \mid I_{n t}=I_{n t}^{o}\right] \\
= & {\left[x_{n t} B_{1}+\eta_{n} \lambda_{t} w_{n t}+\sum_{s=0}^{\rho} \delta_{s} I_{n, t-s}\right] I_{n t}^{o}-x_{n t} B_{0} } \\
& +\sum_{s=0}^{\rho} E_{t}\left[\psi_{0}\left(p_{n, t+s}\right) \mid I_{n t}=I_{n t}^{o}, d_{n, t+1}=0, \ldots, d_{n, t+s}=0\right] \\
& -\sum_{s=0}^{\rho} E_{t}\left[\psi_{0}\left(p_{n, t+s}\right) \mid d_{n t}=0, \ldots, d_{n, t+s}=0\right]
\end{align*}
$$

Aggregate Shocks

- The previous lecture shows how to estimate how to estimate preferences for consumption from the FOC.
- But how should we treat terms like $E_{t}\left[\lambda_{t+s} w_{n, t+s} I_{n, t+s} \mid I_{n t}\right]$ and $E_{t}\left[I_{n, t+s} \mid I_{n t}\right]$, which appear in the Euler equation determining labor supply for those who participate in the workforce?
- We cannot justify substituting:

$$
I_{n, t+s} \text { for } E_{t}\left[I_{n, t+s} \mid I_{n t}\right]
$$

and:

$$
\lambda_{t+s} w_{n, t+s} I_{n, t+s} \text { for } E_{t}\left[\lambda_{t+s} w_{n, t+s} I_{n, t+s} \mid I_{n t}\right]
$$

to equate to zero the sample moment:

$$
\frac{1}{N} \sum_{n=1}^{N} z_{n t}\left[\begin{array}{l}
x_{n t} B_{1}+2 \delta_{0} I_{n t}^{o}+\eta_{n} \lambda_{t} w_{n t} \\
+\sum_{s=1}^{\rho} \delta_{s}\left(I_{n, t-s}+I_{n, t+s}^{o}\right)+\gamma_{1 s} \eta_{n} \lambda_{t+s} w_{n, t+s} I_{n, t+s}^{o}
\end{array}\right]
$$

because λ_{t+s} and w_{t+s} do not average out over the population.

Aggregate Shocks
 Assumptions on the price process

- To estimate the model we place assumptions on the $\lambda_{t} w_{t}$ process.
- Since the $\lambda_{t} w_{t}$ process is endogenous, we must first establish these assumptions are compatible with the social planner's problem. (See Altug and Miller 1998, Appendix.)
- Assume $\lambda_{t+1} w_{t+1}=\Delta_{t} \lambda_{t} w_{t}$ where Δ_{t} :
(1) is an iid random variable with distribution function $F(\Delta, \sigma)$.
(2) has bounded positive support of length $\varsigma \equiv F(\bar{\Delta}, \sigma)-F(\underline{\Delta}, \sigma)$ where

$$
F(\underline{\Delta}, \sigma)=0 \text { and } F(\bar{\Delta}, \sigma)=1 .
$$

- The model has ρ period dependence; to verify this set $I_{n, t+s}=0$ for all initial choices $I_{n t}$ and note that the labor experience of the state variable is $(0, \ldots, 0)$ after ρ periods.
- We also assume $2 \varsigma \rho<\bar{\eta}-\underline{\eta}$ for some $\underline{\eta}$ and $\bar{\eta}$ within the interior of the support of η.

Estimation

A nonparametric estimator of the CCPs

- Decompose any random variable y_{n} into its conditional expectation function on any x_{n} and a disturbance ε_{n}, such that:

$$
\begin{aligned}
y_{n} & =E\left[y_{n} \mid x_{n}\right]+\varepsilon_{n} \\
& \equiv E\left[y_{n} \mid x_{n}\right]+\varepsilon_{n} \text { and hence } E\left[\varepsilon_{n} \mid x_{n}\right]=0
\end{aligned}
$$

- Let $J(\cdot)$ denote a multivariate continuous probability density function satisfying $J(0) \neq 0$ and $J(\infty)=J(-\infty)=0$.
- Suppose $f\left(x_{n}\right)$ is estimated with a weighted average of the other sample y values:

$$
\widehat{f\left(x_{n}\right)} \equiv\left[\sum_{m=1, m \neq n}^{N} J\left(\frac{x_{m}-x_{n}}{\delta_{N}}\right)\right]^{-1} \sum_{m=1, m \neq n}^{N} y_{m} J\left(\frac{x_{m}-x_{n}}{\delta_{N}}\right)
$$

- Then for all x one can show (see for example Prakasa Rao, 1983):

$$
\text { If } \delta_{N} \rightarrow 0 \text { and }\left(N \delta_{N}\right)^{-1} \rightarrow 0 \text { then } \widehat{f(x)} \underset{p}{\rightarrow} f(x)
$$

Estimation

Semiparametric behavioral responses (Table V, Altug and Miller, 1998)

Behavioural responses \dagger

Variable	$\eta_{n}=\mu_{\eta}+\sigma_{\eta} ; v_{n}=\mu_{v}$						$v_{n}=\mu_{v}+\sigma_{v} ; \eta_{n}=\mu_{\eta}$					
	$z_{1}^{(1)}$	$z_{1}^{(2)}$	$z_{1}^{(3)}$	$z_{0}^{(1)}$	$z_{0}^{(2)}$	$z_{0}^{(3)}$	$z_{1}^{(1)}$	$z_{1}^{(2)}$	$z_{1}^{(3)}$	$z_{0}^{(1)}$	$z_{0}^{(2)}$	$z_{0}^{(3)}$
p	0.96	0.43	$0 \cdot 24$	0.31	$0 \cdot 24$	$0 \cdot 23$	$0 \cdot 96$	0.41	$0 \cdot 23$	0.31	$0 \cdot 24$	$0 \cdot 24$
l	1513	1460	1394	1490	1394	1320	1504	1448	1382	1447	1382	1306
w	$7 \cdot 18$	$5 \cdot 71$	5.48	5.94	$5 \cdot 38$	$5 \cdot 46$.	$8 \cdot 80$	$7 \cdot 00$	$6 \cdot 72$	7.28	$6 \cdot 60$	6.70
$\lambda w l$	10877	7803	6311	8666	7028	5950	13250	9493	7670	10543	8542	7224
	$\eta_{n}=\mu_{\eta}+\sigma_{\eta} ; v_{n}=\mu_{v}$						$v_{n}=\mu_{v}+\sigma_{v} ; \eta_{n}=\mu_{\eta}$					
Variable	$z_{1}^{(1)}$	$z_{1}^{(2)}$	$z_{1}^{(3)}$	$z_{0}^{(1)}$	$z_{0}^{(2)}$	$z_{0}^{(3)}$	$z_{1}^{(1)}$	$z_{1}^{(2)}$	$z_{1}^{(3)}$	$z_{0}^{(1)}$	$z_{0}^{(2)}$	$z_{0}^{(3)}$
p	0.96	$0 \cdot 39$	0.22	0.29	0.23	0.23	0.96	0.39	$0 \cdot 23$	$0 \cdot 30$	$0 \cdot 23$	0.23
l	1484	1425	1357	1425	1357	1282	1486	1427	1360	1427	1360	1285
w	$7 \cdot 18$	$5 \cdot 71$	5.48	5.94	$5 \cdot 38$	$5 \cdot 46$	$5 \cdot 56$	4.42	$4 \cdot 24$	$4 \cdot 60$	$4 \cdot 17$	$4 \cdot 23$
$\lambda w l$	10668	7622	6145	8465	6843	5782	8370	5910	4766	6564	5307	4484

\dagger Nonparametrically estimated individual effects.
Corrected key to four panels

$$
\left[\begin{array}{cc}
\left(\eta_{n}+\sigma_{\eta}, v_{n}+\sigma_{v}\right) & \left(\eta_{n}, v_{n}+\sigma_{v}\right) \\
\left(\eta_{n}+\sigma_{\eta}, v_{n}\right) & \left(\eta_{n}, v_{n}\right)
\end{array}\right]
$$

Estimation

- To compute the CCPs required to form an orthogonality condition, we simulate for each (n, t) a future path of aggregate shocks that are specific to the individual, denoted by:

$$
\lambda_{t+s+1}^{(n, t)} w_{t+s+1}^{(n, t)}=\lambda_{t+s}^{(n, t)} w_{t+s}^{(n, t)} \exp (\sigma \pi)
$$

where $\lambda_{t+s}^{(n, t)} w_{t+s}^{(n, t)}$ are estimates obtained from the consumption and wage equations, π is generated from a $\mathcal{N}(0,1)$ and σ is a volatility parameter to be estimated within the orthogonality conditions.

Estimation

Estimated CCPs for the simulation

- To account for the discreteness in participation, define:

$$
p_{k n t}^{(s)}=E_{\tau}\left[d_{n s} \mid l_{n \tau}=k l_{n t}^{o}, l_{n, t+1}=0 \ldots, l_{n, s-1}=0, x_{n t}^{(s)}, \eta_{n} \lambda_{t} w_{t}\right]
$$

- To estimate $p_{k n t}^{(s)}$ define the indicator function and the weight for each $(m, r) \in N \times T$:

$$
\begin{aligned}
d_{m r}^{(s)}= & {\left[(1-k)\left(1-d_{m, r-s}\right)+k d_{m, r-s}\right] \prod_{r=1}^{s-1}\left(1-d_{n, t-r}\right) } \\
J_{k n t}^{(s)}(m, r) \equiv & J_{x}\left(\frac{x_{m r}-x_{n t}^{(s)}}{\delta_{N}}\right) J\left(\frac{\eta_{m} \lambda_{r} w_{r}-\eta_{n} \lambda_{t}^{(n, s)} w_{t}^{(n, s)}}{\delta_{N}}\right) \\
& \times d_{k n t}^{(s)} J\left(\frac{I_{m, r-s}-I_{n t}}{\delta_{N}}\right)^{k} \prod_{\tau=s+1}^{\rho} J\left(\frac{I_{m, r-\tau}-I_{n, t+s-\tau}}{\delta_{N}}\right)
\end{aligned}
$$

- Then the estimated CCPs are:

$$
\widehat{p_{k n t}^{(s)}} \equiv\left[\sum_{(m, r)}^{N \times T} J_{k n t}^{(s)}(m, r)\right]^{-1} \sum_{(m, r)}^{N \times T} d_{m r} J_{k n t}^{(s)}\left(m, r_{2}\right)
$$

Estimation

A simulation estimator for the discrete choice optimality conditions

- Recall the Type 1 Extreme value assumption implies:

$$
\psi_{j}\left(p_{n t}\right)=-\ln p_{j n t} \equiv-\ln p_{j}\left(I_{n, t-s}, \ldots, I_{n, t-1}, x_{n t}, \eta_{n} \lambda_{t} w_{t}\right)
$$

- Then from (1):

$$
\begin{aligned}
\ln p_{1 n t}-\ln p_{0 n t}= & \left(x_{n t} B_{1}+\eta_{n} \lambda_{t} w_{n t}+\sum_{s=0}^{\rho} \delta_{s} I_{n, t-s}\right) \iota_{n t}^{o}-x_{n t} B_{0} \\
& +\sum_{s=1}^{\rho} E_{t}\left[\ln \left(p_{0 n t}^{(s)}\right)-\ln \left(p_{1 n t}^{(s)}\right)\right]
\end{aligned}
$$

- Given instruments $z_{n t}$ we obtain a estimator from:

$$
0=\sum_{n=1}^{N} z_{n t}\left[y_{0 n t}-\left(x_{n t} B_{1}+\sum_{s=0}^{\rho} \delta_{s} I_{n, t-s}\right) I_{n t}^{o}-x_{n t} B_{0}\right]
$$

where:

$$
y_{0 n t} \equiv \sum_{s=0}^{\rho}\left[\ln \left(p_{0 n t}^{(s)}\right)-\ln \left(p_{1 n t}^{(s)}\right)\right]+\eta_{n} \lambda_{t} w_{n t} t_{n t}^{o}
$$

Estimation

- We could exploit the interior FOC for leisure directly in estimation by simulating future values of labor supply off the price shocks that we draw for each person.
- Alternatively the interior FOC for leisure can be expressed as:

$$
\begin{aligned}
& x_{n t} B_{1}+2 \delta_{0} I_{n t}^{o}+\sum_{s=1}^{\rho} \delta_{s} I_{n, t-s}+\eta_{n} w_{n t} \\
= & \frac{-\partial}{\partial I_{n t}} E\left[V\left(I_{n, t-s+1}, \ldots, I_{n t}^{o}, x_{n, t+1}, \lambda_{t+1}, \eta_{n}\right)\right] \\
= & \frac{-\partial}{\partial I_{n t}} \sum_{s=1}^{\rho} \beta^{s} E_{t}\left[\psi_{0}\left(p_{1 n}^{(s)}\right) \mid I_{n t}=I_{n t}^{o}\right]
\end{aligned}
$$

where the third line exploits the facts that neither $x_{n, t+s} B_{1}$ nor $E_{t}\left[V_{n, t+\rho+1} \mid d_{n, t+1}=0, \ldots, d_{n, t+\rho}=0\right]$ depend on $I_{n t}$.

Estimation

A simulation estimator for the interior labor market choices

- Appealing to the Type 1 Extreme Value assumption and defining:

$$
y_{n t} \equiv \frac{\partial}{\partial I_{n t}} \sum_{s=1}^{\rho} \beta^{s} \ln \left(p_{1 n}^{(s)}\right)+\eta_{n} w_{n t}
$$

gives us:

$$
y_{n t}=x_{n t} B_{1}+2 \delta_{0} I_{n t}^{o}+\sum_{s=1}^{\rho} \delta_{s} I_{n, t-s}+\varepsilon_{n t}
$$

where for all $z_{n t}$ in the information set of n at t :

$$
E\left[\varepsilon_{n t} \mid z_{n t}\right]=0
$$

- An estimator is now obtained from:

$$
0=\sum_{n=1}^{N} z_{n t}\left[y_{n t}-x_{n t} B_{1}-2 \delta_{0} I_{n t}^{o}-\sum_{s=1}^{\rho} \delta_{s} l_{n, t-s}\right]
$$

Estimation

Current utility parameter estimates (Table VI, Altug and Miller, 1998)

Hours and participation \dagger

		1. $\beta=0.9, \sigma=0.05$			2. $\beta=0.9, \sigma=0.05$			3. $\beta=0 \cdot 9, \sigma=0$			4. $\beta=0 \cdot 9, \sigma=0$
Variable	Parameter	(a)	(b)	(c)	(a)	(b)	(c)	(a)	(b)	(c)	(c)
1	B_{00}	$\begin{aligned} & 1257 \\ & (566) \end{aligned}$	-	$\begin{aligned} & -676 \\ & (230) \end{aligned}$	$\begin{gathered} \hline-14 \\ (264) \end{gathered}$	-	$\begin{aligned} & -154 \\ & (115) \end{aligned}$	$\begin{aligned} & -44 \\ & (264) \end{aligned}$	-	$\begin{aligned} & \hline-277 \\ & (113) \end{aligned}$	-
$\mathrm{KIDS}_{n t}$	B_{01}	$\begin{gathered} 31 \\ (222) \end{gathered}$	-	$\begin{gathered} 116 \\ (110) \end{gathered}$	$\begin{gathered} 204 \\ (132) \end{gathered}$	-	$\begin{aligned} & -43 \\ & (72) \end{aligned}$	$\begin{gathered} 173 \\ (132) \end{gathered}$	-	$\begin{aligned} & 120 \\ & (41) \end{aligned}$	-
$\mathrm{KIDS}_{n!} \times \mathrm{MAR}_{n}$	B_{02}	$\begin{aligned} & -184 \\ & (208) \end{aligned}$	-	$\begin{gathered} 5 \cdot 62 \\ (106) \end{gathered}$	$\begin{aligned} & -187 \\ & (129) \end{aligned}$	-	$\begin{gathered} 42 \\ (71) \end{gathered}$	$\begin{aligned} & -154 \\ & (129) \end{aligned}$	-	$\begin{aligned} & -77 \\ & (25) \end{aligned}$	-
$\mathrm{AGE}_{n t}$	B_{03}	$\begin{aligned} & -37 \\ & (33) \end{aligned}$	-	$\begin{aligned} & 42.2 \\ & (16) \end{aligned}$	$\begin{gathered} 31 \\ (13) \end{gathered}$	-	$\begin{gathered} 13 \\ (6 \cdot 6) \end{gathered}$	$\begin{gathered} 29 \\ (13) \end{gathered}$	-	$\begin{gathered} 18 \\ (6 \cdot 5) \end{gathered}$	-
$\mathrm{AGE}_{n t}{ }^{2}$	B_{04}	$\begin{gathered} 0.06 \\ (0.03) \end{gathered}$	-	$\begin{gathered} 0.03 \\ (0.02) \end{gathered}$	$\begin{aligned} & -0.03 \\ & (0.01) \end{aligned}$	-	$\begin{aligned} & -0.02 \\ & (0.01) \end{aligned}$	$\begin{aligned} & -0.03 \\ & (0.01) \end{aligned}$	-	$\begin{aligned} & -0.03 \\ & (0.01) \end{aligned}$	-
$l_{n t}$	B_{10}	$\begin{aligned} & -11.6 \\ & (0.51) \end{aligned}$	$\begin{aligned} & -10 \cdot 4 \\ & (0.04) \end{aligned}$	$\begin{gathered} -11 \\ (0.25) \end{gathered}$	$\begin{gathered} -5.4 \\ (0.24) \end{gathered}$	$\begin{aligned} & -5 \cdot 6 \\ & (0.02) \end{aligned}$	$\begin{aligned} & -5.5 \\ & (0.12) \end{aligned}$	$\begin{gathered} -4.8 \\ (0.24) \end{gathered}$	$\begin{aligned} & -5 \cdot 1 \\ & (0 \cdot 02) \end{aligned}$	$\begin{aligned} & -4.5 \\ & (0.11) \end{aligned}$	$\begin{aligned} & -2.7 \\ & (0.12) \end{aligned}$
$\mathrm{KIDS}_{n t} \times I_{n t}$	B_{11}	$\begin{gathered} 0.16 \\ (0.17) \end{gathered}$	$\begin{gathered} 0.28 \\ (0.02) \end{gathered}$	$\begin{aligned} & 0.22 \\ & (0.10) \end{aligned}$	$\begin{aligned} & -0.55 \\ & (0.10) \end{aligned}$	$\begin{aligned} & -0.14 \\ & (0.01) \end{aligned}$	$\begin{gathered} -0.40 \\ (0.07) \end{gathered}$	$\begin{gathered} -0.49 \\ (0 \cdot 10) \end{gathered}$	$\begin{gathered} -0.14 \\ (0.01) \end{gathered}$	$\begin{aligned} & 0 \cdot 3 \mathrm{E}-05 \\ & (0 \cdot 1 \mathrm{E}-04) \end{aligned}$	$\begin{gathered} -0.51 \\ (0.15) \end{gathered}$
$\left(\mathrm{KIDS}_{n t} \times \mathrm{MAR}_{n t}\right) l_{n t}$	B_{12}	$\begin{gathered} 0.18 \\ (0.16) \end{gathered}$	$\begin{aligned} & -0.12 \\ & (0.02) \end{aligned}$	$\begin{gathered} 0.07 \\ (0.10) \end{gathered}$	$\begin{gathered} 0.60 \\ (0.10) \end{gathered}$	$\begin{gathered} 0.34 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.52 \\ (0.07) \end{gathered}$	$\begin{gathered} 0.54 \\ (0.10) \end{gathered}$	$\begin{gathered} 0.34 \\ (0.01) \end{gathered}$	$\begin{gathered} -0.05 \\ (0.02) \end{gathered}$	$\begin{aligned} & 0.90 \\ & (0.15) \end{aligned}$
$\mathrm{AGE}_{n t} \times I_{n t}$	B_{13}	$\begin{gathered} 0.31 \\ (0.49) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.003) \end{gathered}$	$\begin{aligned} & -0.60 \\ & (0.26) \end{aligned}$	$\begin{gathered} -0.52 \\ (0.17) \end{gathered}$	$\begin{gathered} 0.008 \\ (0.001) \end{gathered}$	$\begin{aligned} & -0.20 \\ & (0.01) \end{aligned}$	$\begin{aligned} & -0.47 \\ & (0.17) \end{aligned}$	$\begin{aligned} & 0.003 \\ & (0.001) \end{aligned}$	$\begin{gathered} -0.24 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.19 \\ (0.005) \end{gathered}$
$\mathrm{AGE}_{n t}^{2} \times l_{n t}$	B_{14}	$\begin{gathered} 0.002 \\ (0.05 \mathrm{E}-03) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.5 \mathrm{E}-04) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.3 \mathrm{E}-03) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.2 \mathrm{E}-03) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.2 \mathrm{E}-04) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.1 \mathrm{E}-03) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.2 \mathrm{E}-03) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.2 \mathrm{E}-04) \end{gathered}$	$\begin{gathered} 0 \cdot 002 \\ (0 \cdot 1 \mathrm{E}-03) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.2 \mathrm{E}-03) \end{gathered}$
$l_{n J}^{2}$	δ_{0}	$\begin{gathered} 0.002 \\ (0 \cdot 1 \mathrm{E}-03) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.2 \mathrm{E}-04) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.6 \mathrm{E}-04) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.6 \mathrm{E}-04) \end{gathered}$	$\begin{gathered} 0 \cdot 001 \\ (0 \cdot 1 \mathrm{E}-05) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.3 \mathrm{E}-04) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.6 \mathrm{E}-04) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.8 \mathrm{E}-05) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.3 E-04) \end{gathered}$	$\begin{aligned} & 0 \cdot 3 \mathrm{E}-04 \\ & (0 \cdot 1 \mathrm{E}-03) \end{aligned}$
$l_{n r} l_{n, t-1}$	δ_{1}	$\begin{gathered} -0.001 \\ (0 \cdot 1 \mathrm{E}-03) \end{gathered}$	$\begin{gathered} -0.001 \\ (0.2 \mathrm{E}-04) \end{gathered}$	$\begin{gathered} -0 \cdot 001 \\ (0 \cdot 1 E-04) \end{gathered}$	$\begin{aligned} & -0.6 \mathrm{E}-03 \\ & (0.5 \mathrm{E}-04) \end{aligned}$	$\begin{aligned} & -0.5 \mathrm{E}-03 \\ & (0 \cdot 1 \mathrm{E}-05) \end{aligned}$	$\begin{aligned} & -0.6 \mathrm{E}-03 \\ & (0.4 \mathrm{E}-04) \end{aligned}$	$\begin{aligned} & -0.5 \mathrm{E}-03 \\ & (0.5 \mathrm{E}-04) \end{aligned}$	$\begin{gathered} -0 \cdot 5 \mathrm{E}-03 \\ (0 \cdot 1 \mathrm{E}-05) \end{gathered}$	$\begin{aligned} & -0.6 \mathrm{E}-03 \\ & (0.4 \mathrm{E}-04) \end{aligned}$	$\begin{array}{r} -0 \cdot 7 \mathrm{E}-03 \\ (0 \cdot 1 \mathrm{E}-03) \end{array}$
$l_{m 1} l_{n, r-2}$	δ_{2}	$\begin{aligned} & -0 \cdot 7 \mathrm{E}-03 \\ & (0 \cdot 1 \mathrm{E}-03) \end{aligned}$	$\begin{aligned} & -0.7 E-03 \\ & (0.2 \mathrm{E}-04) \end{aligned}$	$\begin{aligned} & -0 \cdot 7 \mathrm{E}-03 \\ & (0 \cdot 1 \mathrm{E}-04) \end{aligned}$	$\begin{aligned} & -0.4 \mathrm{E}-03 \\ & (0.6 \mathrm{E}-04) \end{aligned}$	$\begin{aligned} & -0 \cdot 4 \mathrm{E}-03 \\ & (0 \cdot 1 \mathrm{E}-05) \end{aligned}$	$\begin{aligned} & -0 \cdot 3 \mathrm{E}-03 \\ & (0 \cdot 4 \mathrm{E}-04) \end{aligned}$	$\begin{aligned} & -0.3 \mathrm{E}-03 \\ & (0.6 \mathrm{E}-04) \end{aligned}$	$\begin{gathered} -0.4 \mathrm{E}-03 \\ (0.9 \mathrm{E}-05) \end{gathered}$	$\begin{aligned} & -0.3 \mathrm{E}-03 \\ & (0.5 \mathrm{E}-04) \end{aligned}$	$\begin{gathered} -0 \cdot 6 \mathrm{E}-03 \\ (0 \cdot 1 \mathrm{E}-03) \end{gathered}$
$l_{n r} l_{n, t-3}$	δ_{3}	$\begin{aligned} & -0 \cdot 7 \mathrm{E}-03 \\ & (0 \cdot 1 \mathrm{E}-03) \end{aligned}$	$\begin{aligned} & -0.8 \mathrm{E}-03 \\ & (0.2 \mathrm{E}-04) \end{aligned}$	$\begin{aligned} & -0 \cdot 6 \mathrm{E}-03 \\ & (0 \cdot 1 \mathrm{E}-04) \end{aligned}$	$\begin{aligned} & -0.3 \mathrm{E}-03 \\ & (0.5 \mathrm{E}-04) \end{aligned}$	$\begin{aligned} & -0 \cdot 3 \mathrm{E}-03 \\ & (0 \cdot 1 \mathrm{E}-05) \end{aligned}$	$\begin{gathered} -0.3 \mathrm{E}-03 \\ (0.4 \mathrm{E}-04) \end{gathered}$	$\begin{aligned} & -0.2 \mathrm{E}-03 \\ & (0.5 \mathrm{E}-05) \end{aligned}$	$\begin{aligned} & -0.3 \mathrm{E}-03 \\ & (0.9 \mathrm{E}-05) \end{aligned}$	$\begin{gathered} -0.2 \mathrm{E}-03 \\ (0.4 \mathrm{E}-04) \end{gathered}$	$\begin{gathered} -0.5 \mathrm{E}-03 \\ (0.1 \mathrm{E}-03) \end{gathered}$

\dagger Standard errors in parentheses. a. Participation equation; b. Hours equation; c. Joint estimates.
Column 1: Nonparametric fixed effects. Columns 2, 3 and 4 : Time-averaged fixed effects.

