Human Capital and Nonseparable Preferences

Robert A. Miller

Structural Econometrics

December 2017

Miller (Structural Econometrics)

Auctions, Contracts and Markets

December 2017 1 / 21

Nonseparabilities over time

Competitive equilibrium

- Panel data reject the joint null hypothesis that:
 - consumer workers maximize expected utility.
 - they have rational expectations.
 - the disturbance structure is *iid*.
 - current utility is CRRA.
 - Ourrent utility is additively separable within and between periods.
 - goods and labor productivity are additively separable over time.
 - Ithere are complete markets.
- There is less consensus on which of these factors is instrumental:
 - Some economists believe 7 fails.
 - Others believe 3 through 7 cause the rejections.
 - There are those who believe consumers violate 1 and/or 2.
- The remainder of the course focuses on the failure of complete markets and the incorporation of nonseparable preferences.
- In both cases we justify the extensions with evidence from the data.

- Female labor supply receives much more attention than male labor supply from labor economists.
- There are two main reasons. Female labor supply:
 - exhibits much more variation than male labor supply.
 - is significantly correlated with variables observed typically observed in panel data (such as household composition and education).
- One noticeable feature of female wage data is that past labor supply decisions significantly and quantitatively affect their current wages.
- This form of human capital accumulation induces nonseparabilities over time within the production function.

Female Wages Wage equation (Altug and Miller, 1998)

Suppose:

$$\widetilde{w}_{nt} \equiv w_{nt} \exp\left(\varepsilon_{3nt}\right)$$

and:

$$w_{nt} \equiv w_t v_n \exp\left[x_{nt} B_3 + \sum_{s=1}^{\rho} \left(\gamma_{1s} I_{n,t-s} + \gamma_{2s} d_{n,t-s}\right)\right]$$

where:

- \widetilde{w}_{nt} measured wage rate of n at t
- w_{nt} wage rate of n at t
- ε_{3nt} iid measurement error
- wt wage rate for standardized unit of labor
- v_n household specific fixed effect
- x_{nt} time varying socioeconomic factors
- $I_{nt} \in [0, 1]$ normalized labor time

•
$$d_{nt} = \begin{cases} 0 \text{ if } l_{nt} = 0 \\ 1 \text{ if } l_{nt} > 0 \end{cases}$$

Female Wages

Estimates from the PSID (Table III, Altug and Miller, 1998)

	$\operatorname{III}(w_{nl}) = \operatorname{III}(u)$	$(v_n) + m(v_n) + m($	$\sum_{\alpha=1} Q \ln \alpha n d - s$	$+ \gamma_{2s} a_{n,l-s} + \lambda_{nl} D_3$		
Variable	Parameter	(i) Estimate	(ii) Estimate	Variable	(i) Estimate	(ii) Estimate
Lags of hours worked				Aggregate wages		
$\Delta I_{n,r-1}$	γ.,	0.0002 (0.00001)	0.0002 (0.5E−5)	$\Delta \ln (\omega_7)$	—	0·045 (0·016)
$\Delta I_{n,t-2}$	γ12	0.0001 (0.00001)	0-0001 (0-000006)	$\Delta \ln (\omega_8)$	_	-0.003 (0.021)
$\Delta l_{n,t-3}$	γ ₁₃	0.00008 (0.00001)	0.00006 (0.000006)	$\Delta \ln (\omega_9)$	-0.013 (0.022)	-0.038 (0.011)
$\Delta l_{n,t-4}$	γ14	0.00006 (0.00001)	0.00005 (0.000005)	$\Delta \ln (\omega_{10})$	-0.04 (0.02)	0·02 (0·01)
$\Delta I_{n,t-5}$	Y15	0.00002 (0.00001)	_	$\Delta \ln (\omega_{11})$	0·11 (0·02)	0·074 (0·01)
$\Delta l_{n,r-6}$	Y16	0.00002 (0.00001)	—	$\Delta \ln (\omega_{12})$	0·05 (0·02)	0·03 (0·02)
Lags of participation				$\Delta \ln (\omega_{13})$	0·05 (0·02)	0·02 (0·01)
$\Delta d_{n,r-1}$	γ ₂₁	-0·11 (0·021)	-0.09 (0.01)	$\Delta \ln (\omega_{14})$	-0.01 (0.02)	-0.03 (0.01)
$\Delta d_{n,r-2}$	γ ₂₂	-0·10 (0·021)	-0.07 (0.01)	$\Delta \ln (\omega_{15})$	0·05 (0·02)	0·02 (0·01)
$\Delta d_{n,r-3}$	Ϋ́23	-0·10 (0·02)	-0.09 (0.01)	$\Delta \ln (\omega_{16})$	-0.02 (0.02)	-0.01 (0.01)
$\Delta I_{n,t-4}$	Y24	-0·10 (0·02)	-0.07 (0.01)	$\Delta \ln (\omega_{17})$	0·07 (0·02)	0·04 (0·01)
$\Delta d_{n,t-5}$	Y25	-0.05 (0.02)	_	$\Delta \ln (\omega_{18})$	-0.01 (0.02)	-0.02 (0.01)
$\Delta d_{n,t-6}$	Υ ₂₆	-0.03 (0.02)	-	$\Delta \ln (\omega_{19})$	0·082 (0·02)	0·05 (0·02)
Socioeconomic variables						
ΔAGE_{ni}^{2}	B ₃₁	-0.0005 (0.0001)	-0.0002 (0.00005)			
$\Delta(\text{AGE}_{nt} \times \text{EDU}_{nt})$	B ₃₂	0·0001 (0·0004)	0·0002 (0·0001)			

The wage equation[†] $\ln (w_{nt}) = \ln (\omega_t) + \ln (v_n) + \sum_{i=1}^{n} (\gamma_{1s} I_{n,t-s} + \gamma_{2s} d_{n,t-s}) + x'_{nt} B_2$

† Standard errors in parentheses.

э

< ロト < 同ト < ヨト < ヨ

Preferences and resource constraint

l

• Suppose individual *n* is uniformly distributed on [0, 1] with current consumption *c*_{nt} and current utility:

$$U_{nt} = (1 - d_{nt}) (x_{nt}B_0 + \varepsilon_{0nt}) + d_{nt}\varepsilon_{1nt} + \alpha^{-1}c_{nt}^{\alpha} \exp [x_{nt}B_2 + \varepsilon_{2nt}] + \left[x_{nt}B_1 + \sum_{s=0}^{\rho} \delta_s I_{n,t-s}\right] I_{nt}$$

 Aggregate consumption cannot exceed aggregate income, comprising aggregate wages and aggregate nonlabor income, et:

$$\int_0^1 c_{nt} dn \le e_t + \int_0^1 w_{nt} I_{nt} dn$$

• The planner's preferences are given by:

$$E_0\left\{\sum_{t=0}^{\infty}\beta^t\left[\int_0^1\eta_n^{-1}U_{nt}dn\right]\right\}$$

where β is a subjective discount factor, and η_n is the marginal utility of wealth for *n* in the corresponding competitive equilibrium $\beta_n = -\beta_n$

First order conditions

- Let λ_t denote the Lagrange multiplier associated with the aggregate resource constraint.
- The log of the FOC for consumption is then:

$$(\alpha - 1) \ln c_{nt} + (x_{nt}B_2 + \varepsilon_{2nt}) = \ln \eta_n + \ln \lambda_t$$

• Similarly the interior FOC for leisure can be expressed as:

$$D = x_{nt}B_1 + 2\delta_0 I_{nt}^o + \sum_{s=1}^{\rho} \delta_s I_{n,t-s} + \eta_n \lambda_t w_{nt} + \sum_{s=1}^{\rho} E_t \left[(\delta_s + \gamma_{1s}\eta_n \lambda_{t+s} w_{n,t+s}) I_{n,t+s}^o | I_{nt}^o \right]$$

where we draw on the parameterization of utility and productivity, which imply:

$$\frac{\partial}{\partial I_{nt}}U_{n,t+s} = \delta_s I_{n,t+s}$$

$$\frac{\partial}{\partial I_{nt}}\eta_n\lambda_{t+s}w_{n,t+s}I_{n,t+s} = \gamma_{1s}\eta_n\lambda_{t+s}w_{n,t+s}I_{n,t+s}$$

Partitioning the social planner's problem

• Noting the preferences for consumption and leisure are additively separable, the planner:

• chooses c_{nt} for all (n, t) to maximize:

$$E_0\left\{\alpha^{-1}\sum_{t=0}^{\infty}\beta^t\left[\int_0^1\eta_n^{-1}c_{nt}^{\alpha}\exp\left[x_{nt}B_2+\varepsilon_{2nt}\right]dn\right]\right\}$$

subject to the budget constraints for each t:

$$\int_0^1 c_{nt} dn \leq e_t' \equiv e_t + \int_0^1 w_{nt} l_{nt}^o dn$$

2 chooses I_{nt} for all (n, t) to maximize:

$$E_0\left\{\sum_{t=0}^{\infty}\beta^t\left[\begin{array}{c}(1-d_{nt})\left(x_{nt}B_0+\varepsilon_{0nt}\right)+d_{nt}\varepsilon_{1nt}\\+x_{nt}B_1I_{nt}+\sum_{s=0}^{\rho}\delta_sI_{n,t-s}I_{nt}+\eta_n\lambda_tw_{nt}I_{nt}\end{array}\right]\right\}$$

where λ_t is the Lagrange multiplier associated with the aggregate resource constraint for the consumption allocation problem.

Miller (Structural Econometrics)

Optimal participation

The exante value function for the labor supply problem of n at t is:

$$V(I_{n,t-s},...,I_{n,t-1},x_{nt},\lambda_{t}w_{t},\eta_{n}) = E_{t} \left\{ \sum_{r=t}^{\infty} \beta^{r-t} \left[\begin{array}{c} (1-d_{nr}) \varepsilon_{0nr} + d_{nr} (x_{nr}B_{0} + \varepsilon_{1nr}) \\ + x_{nr}B_{1}I_{nr}^{o} + \sum_{s=0}^{\rho} \delta_{s}I_{n,r-s}^{o}I_{nr}^{o} + \eta_{n}\lambda_{t}w_{nr}I_{nr}^{o} \end{array} \right] \right\}$$

and denote the associated conditional value functions by:

$$\begin{aligned} v_{0nt} &= x_{nt}B_0 + \int \left[\begin{array}{cc} V\left(I_{n,t-s+1}, \dots, 0, x_{n,t+1}, \lambda_{t+1}w_{t+1}, \eta_n\right) \\ \times dF\left(x_{n,t+1}, \lambda_{t+1}w_{t+1} \mid x_{nt}, \lambda_t w_t\right) \end{array} \right] \\ v_{1nt} &= \left[x_{nt}B_1 + \eta_n \lambda_t w_{nt} + \sum_{s=0}^{\rho} \delta_s I_{n,t-s} \right] I_{nt}^o \\ &+ \int \left[\begin{array}{c} V\left(I_{n,t-s+1}, \dots, I_{nt}^o, x_{n,t+1}, \lambda_{t+1}w_{t+1}, \eta_n\right) \\ \times dF\left(x_{n,t+1}, \lambda_{t+1} \mid x_{nt}, \lambda_t w_t\right) \end{array} \right] \end{aligned}$$

Then optimal participation is given by:

$$d_{nt} = \begin{cases} 0 \text{ if } v_{1nt} + \varepsilon_{1nt} \leq v_{0nt} + \varepsilon_{0nt} \\ 1 \text{ if } v_{1nt} + \varepsilon_{1nt} > v_{0nt} + \varepsilon_{0nt} \\ \end{cases}$$

Miller (Structural Econometrics)

Auctions, Contracts and Markets

A Representation of the Value Function

Telescoping forwards using the nonparticipation choice

• Denote the conditional choice probability of participation by:

$$p_{nt} = E_t \left[d_{nt} \left| I_{n,t-s}, \ldots, I_{n,t-1}, x_{nt}, \eta_n \lambda_t w_t \right] \right]$$

Suppressing the arguments (*I_{n,t-s},..., I_{n,t-1}, x_{nt}, η_nλ_tw_t*), previous lectures on discrete choice proved:

$$V_{nt} = \psi_0(p_{nt}) + v_{0nt} = \psi_0(p_{nt}) + x_{nt}B_1 + E_t [V_{n,t+1} | d_{nt} = 0]$$

• Telescoping forwards:

$$V_{nt} = \psi_0(p_{nt}) + x_{nt}B_1 + E_t [\psi_0(p_{n,t+1}) + x_{n,t+1}B_1 | d_{nt} = 0] + E_t [V_{n,t+2} | d_{nt} = 0, d_{n,t+1} = 0] = \sum_{s=0}^{\rho} E_t [\psi_0(p_{n,t+s}) + x_{n,t+s}B_1 | d_{nt} = 0, \dots, d_{n,t+s} = 0] + E_t [V_{n,t+\rho+1} | d_{n,t+1} = 0, \dots, d_{n,t+\rho} = 0]$$

A Representation of the Value Function

Finite dependence

Since:

$$\psi_{0}\left(p_{nt}\right) - \psi_{1}\left(p_{nt}\right) = v_{1nt} - v_{0nt}$$

it now follows that:

$$\begin{aligned} \psi_{0}(p_{nt}) - \psi_{1}(p_{nt}) & (1) \\ &= \left[x_{nt}B_{1} + \eta_{n}\lambda_{t}w_{nt} + \sum_{s=0}^{\rho}\delta_{s}I_{n,t-s} \right] I_{nt}^{o} - x_{nt}B_{0} \\ &+ E_{t} \left[V_{n,t+1} \mid d_{nt} = 0 \right] - E_{t} \left[V_{n,t+1} \mid I_{nt} = I_{nt}^{o} \right] \\ &= \left[x_{nt}B_{1} + \eta_{n}\lambda_{t}w_{nt} + \sum_{s=0}^{\rho}\delta_{s}I_{n,t-s} \right] I_{nt}^{o} - x_{nt}B_{0} \\ &+ \sum_{s=0}^{\rho}E_{t} \left[\psi_{0}(p_{n,t+s}) \mid I_{nt} = I_{nt}^{o}, d_{n,t+1} = 0, \dots, d_{n,t+s} = 0 \right] \\ &- \sum_{s=0}^{\rho}E_{t} \left[\psi_{0}(p_{n,t+s}) \mid d_{nt} = 0, \dots, d_{n,t+s} = 0 \right] \end{aligned}$$

Aggregate shocks with intertemporal nonseparabilities

- The previous lecture shows how to estimate how to estimate preferences for consumption from the FOC.
- But how should we treat terms like $E_t [\lambda_{t+s} w_{n,t+s} I_{n,t+s} | I_{nt}]$ and $E_t [I_{n,t+s} | I_{nt}]$, which appear in the Euler equation determining labor supply for those who participate in the workforce?
- We cannot justify substituting:

$$I_{n,t+s}$$
 for $E_t \left[I_{n,t+s} \left| I_{nt} \right] \right]$

and:

$$\lambda_{t+s} w_{n,t+s} I_{n,t+s}$$
 for $E_t [\lambda_{t+s} w_{n,t+s} I_{n,t+s} | I_{nt}]$

to equate to zero the sample moment:

$$\frac{1}{N} \sum_{n=1}^{N} z_{nt} \left[\begin{array}{c} x_{nt} B_1 + 2\delta_0 I_{nt}^o + \eta_n \lambda_t w_{nt} \\ + \sum_{s=1}^{\rho} \delta_s \left(I_{n,t-s} + I_{n,t+s}^o \right) + \gamma_{1s} \eta_n \lambda_{t+s} w_{n,t+s} I_{n,t+s}^o \end{array} \right]$$

because λ_{t+s} and w_{t+s} do not average out over the population.

- To estimate the model we place assumptions on the $\lambda_t w_t$ process.
- Since the $\lambda_t w_t$ process is endogenous, we must first establish these assumptions are compatible with the social planner's problem. (See Altug and Miller 1998, Appendix.)

• Assume
$$\lambda_{t+1}w_{t+1} = \Delta_t \lambda_t w_t$$
 where Δ_t :

- is an *iid* random variable with distribution function F (Δ, σ).
 has bounded positive support of length *ς* ≡ F (Δ, σ) F (Δ, σ) where F (Δ, σ) = 0 and F (Δ, σ) = 1.
- The model has ρ period dependence; to verify this set $I_{n,t+s} = 0$ for all initial choices I_{nt} and note that the labor experience of the state variable is $(0, \ldots, 0)$ after ρ periods.
- We also assume $2\varsigma\rho < \overline{\eta} \underline{\eta}$ for some $\underline{\eta}$ and $\overline{\eta}$ within the interior of the support of η .

Estimation

A nonparametric estimator of the CCPs

• Decompose any random variable y_n into its conditional expectation function on any x_n and a disturbance ε_n , such that:

$$\begin{array}{rcl} y_n & = & E\left[y_n \,|\, x_n\right] + \varepsilon_n \\ & \equiv & E\left[y_n \,|\, x_n\right] + \varepsilon_n \text{ and hence } E\left[\varepsilon_n \,|\, x_n\right] = 0 \end{array}$$

- Let $J(\cdot)$ denote a multivariate continuous probability density function satisfying $J(0) \neq 0$ and $J(\infty) = J(-\infty) = 0$.
- Suppose $f(x_n)$ is estimated with a weighted average of the other sample y values:

$$\widehat{f(x_n)} \equiv \left[\sum_{m=1, m \neq n}^{N} J\left(\frac{x_m - x_n}{\delta_N}\right)\right]^{-1} \sum_{m=1, m \neq n}^{N} y_m J\left(\frac{x_m - x_n}{\delta_N}\right)$$

• Then for all x one can show (see for example Prakasa Rao, 1983):

If
$$\delta_N \to 0$$
 and $(N\delta_N)^{-1} \to 0$ then $\widehat{f(x)} \xrightarrow{p} f(x)$

Semiparametric behavioral responses (Table V, Altug and Miller, 1998)

	$\eta_n = \mu_\eta + \sigma_\eta; \nu_n = \mu_\nu$						$v_n = \mu_v + \sigma_v; \ \eta_n = \mu_\eta$						
Variable	$z_1^{(1)}$	z ₁ ⁽²⁾	z ₁ ⁽³⁾	$z_0^{(1)}$	$z_0^{(2)}$	z ₀ ⁽³⁾	$z_1^{(1)}$	z ₁ ⁽²⁾	z ₁ ⁽³⁾	$z_0^{(1)}$	$z_0^{(2)}$	$z_0^{(3)}$	
р	0.96	0.43	0.24	0.31	0.24	0.23	0.96	0.41	0.23	0.31	0.24	0.24	
1	1513	1460	1394	1490	1394	1320	1504	1448	1382	1447	1382	1306	
w	7.18	5.71	5.48	5.94	5.38	5.46.	8.80	7.00	6.72	7.28	6.60	6.70	
λwl	10877	7803	6311	8666	7028	5950	13250	9493	7670	10543	8542	7224	
	$\eta_n = \mu_\eta + \sigma_\eta; \nu_n = \mu_\nu$							$v_n = \mu_v + \sigma_v; \ \eta_n = \mu_\eta$					
Variable	$z_1^{(1)}$	$z_1^{(2)}$	z ₁ ⁽³⁾	$z_0^{(1)}$	$z_0^{(2)}$	$z_0^{(3)}$	$z_1^{(1)}$	z ₁ ⁽²⁾	$z_1^{(3)}$	$\overline{z_{0}^{(1)}}$	$z_0^{(2)}$	$z_0^{(3)}$	
p	0.96	0.39	0.22	0.29	0.23	0.23	0.96	0.39	0.23	0.30	0.23	0.23	
Î.	1484	1425	1357	1425	1357	1282	1486	1427	1360	1427	1360	1285	
w	7.18	5.71	5.48	5.94	5.38	5.46	5.56	4.42	4.24	4.60	4.17	4.23	
λwl	10668	7622	6145	8465	6843	5782	8370	5910	4766	6564	5307	4484	

Behavioural responses[†]

† Nonparametrically estimated individual effects.

Corrected key to four panels $\begin{bmatrix} (\eta_n + \sigma_\eta, v_n + \sigma_v) & (\eta_n, v_n + \sigma_v) \\ (\eta_n + \sigma_\eta, v_n) & (\eta_n, v_n) \end{bmatrix}$

• To compute the CCPs required to form an orthogonality condition, we simulate for each (n, t) a future path of aggregate shocks that are specific to the individual, denoted by:

$$\lambda_{t+s+1}^{(n,t)} \mathbf{w}_{t+s+1}^{(n,t)} = \lambda_{t+s}^{(n,t)} \mathbf{w}_{t+s}^{(n,t)} \exp\left(\sigma\pi\right)$$

where $\lambda_{t+s}^{(n,t)} w_{t+s}^{(n,t)}$ are estimates obtained from the consumption and wage equations, π is generated from a $\mathcal{N}(0,1)$ and σ is a volatility parameter to be estimated within the orthogonality conditions.

Estimation Estimated CCPs for the simulation

• To account for the discreteness in participation, define:

$$p_{knt}^{(s)} = E_{\tau} \left[d_{ns} \left| I_{n\tau} = k I_{nt}^{o}, I_{n,t+1} = 0 \dots, I_{n,s-1} = 0, x_{nt}^{(s)}, \eta_n \lambda_t w_t \right] \right]$$

• To estimate $p_{knt}^{(s)}$ define the indicator function and the weight for each $(m, r) \in N \times T$:

$$d_{mr}^{(s)} = \left[(1-k) \left(1 - d_{m,r-s} \right) + k d_{m,r-s} \right] \prod_{r=1}^{s-1} \left(1 - d_{n,t-r} \right)$$

$$J_{knt}^{(s)}(m,r) \equiv J_{x}\left(\frac{x_{mr}-x_{nt}^{(s)}}{\delta_{N}}\right) J\left(\frac{\eta_{m}\lambda_{r}w_{r}-\eta_{n}\lambda_{t}^{(n,s)}w_{t}^{(n,s)}}{\delta_{N}}\right)$$
$$\times d_{knt}^{(s)} J\left(\frac{I_{m,r-s}-I_{nt}}{\delta_{N}}\right)^{k} \prod_{\tau=s+1}^{\rho} J\left(\frac{I_{m,r-\tau}-I_{n,t+s-\tau}}{\delta_{N}}\right)^{k}$$

Then the estimated CCPs are:

Miller (Structural Econometrics)

Auctions, Contracts and Markets

Estimation

A simulation estimator for the discrete choice optimality conditions

• Recall the Type 1 Extreme value assumption implies:

$$\psi_j(p_{nt}) = -\ln p_{jnt} \equiv -\ln p_j(I_{n,t-s},\ldots,I_{n,t-1},x_{nt},\eta_n\lambda_t w_t)$$

• Then from (1):

$$\ln p_{1nt} - \ln p_{0nt} = \left(x_{nt} B_1 + \eta_n \lambda_t w_{nt} + \sum_{s=0}^{\rho} \delta_s I_{n,t-s} \right) I_{nt}^o - x_{nt} B_0$$

+ $\sum_{s=1}^{\rho} E_t \left[\ln \left(p_{0nt}^{(s)} \right) - \ln \left(p_{1nt}^{(s)} \right) \right]$

• Given instruments z_{nt} we obtain a estimator from:

$$0 = \sum_{n=1}^{N} z_{nt} \left[y_{0nt} - \left(x_{nt} B_1 + \sum_{s=0}^{\rho} \delta_s I_{n,t-s} \right) I_{nt}^{o} - x_{nt} B_0 \right]$$

where:

$$y_{0nt} \equiv \sum_{s=0}^{\rho} \left[\ln \left(p_{0nt}^{(s)} \right) - \ln \left(p_{1nt}^{(s)} \right) \right] + \eta_n \lambda_t w_{nt} l_{nt}^{o}$$

- We could exploit the interior FOC for leisure directly in estimation by simulating future values of labor supply off the price shocks that we draw for each person.
- Alternatively the interior FOC for leisure can be expressed as:

$$\begin{aligned} x_{nt}B_{1} + 2\delta_{0}I_{nt}^{o} + \sum_{s=1}^{\rho} \delta_{s}I_{n,t-s} + \eta_{n}w_{nt} \\ &= \frac{-\partial}{\partial I_{nt}}E\left[V\left(I_{n,t-s+1},\ldots,I_{nt}^{o},x_{n,t+1},\lambda_{t+1},\eta_{n}\right)\right] \\ &= \frac{-\partial}{\partial I_{nt}}\sum_{s=1}^{\rho}\beta^{s}E_{t}\left[\psi_{0}\left(p_{1n}^{(s)}\right)|I_{nt} = I_{nt}^{o}\right] \end{aligned}$$

where the third line exploits the facts that neither $x_{n,t+s}B_1$ nor $E_t \left[V_{n,t+\rho+1} \middle| d_{n,t+1} = 0, \dots, d_{n,t+\rho} = 0 \right]$ depend on I_{nt} .

• Appealing to the Type 1 Extreme Value assumption and defining:

$$y_{nt} \equiv \frac{\partial}{\partial I_{nt}} \sum_{s=1}^{\rho} \beta^{s} \ln \left(p_{1n}^{(s)} \right) + \eta_{n} w_{nt}$$

gives us:

$$y_{nt} = x_{nt}B_1 + 2\delta_0 I_{nt}^o + \sum_{s=1}^{\rho} \delta_s I_{n,t-s} + \varepsilon_{nt}$$

where for all z_{nt} in the information set of n at t:

$$E\left[\varepsilon_{nt}\left|z_{nt}\right.
ight]=0$$

• An estimator is now obtained from:

$$0 = \sum_{n=1}^{N} z_{nt} \left[y_{nt} - x_{nt} B_1 - 2\delta_0 I_{nt}^o - \sum_{s=1}^{\rho} \delta_s I_{n,t-s} \right]$$

Current utility parameter estimates (Table VI, Altug and Miller, 1998)

Hours and participation [†]											
		1. $\beta = 0.9, \sigma = 0.05$			2. $\beta = 0.9, \sigma = 0.05$			3. $\beta = 0.9, \sigma = 0$			4. $\beta = 0.9, \sigma = 0$
Variable	Parameter	(a)	(b)	(c)	(a)	(b)	(c)	(a)	(b)	(c)	(c)
1	B ₀₀	1257		-676	-14	-	-154	- 44	-	-277	-
KIDS _{ar}	B ₀₁	(566) 31	_	(230) 116	(264) 204	-	-43	(264) 173	-	120	
KIDS., × MAR.,	Bio	(222) - 184		(110) 5-62	(132) - 187	_	(72) 42	(132) - 154	_	(41) - 77	
ACE	- u.	(208)		(106)	(129)		(71)	(129)		(25)	
AUE	D ₀₃	(33)		(16)	(13)	_	(6.6)	(13)	_	(6.5)	
AGE ²	B ₀₄	0.06 (0.03)	_	0.03 (0.02)	-0-03 (0-01)	-	-0.02 (0.01)	-0-03 (0-01)	-	-0.03 (0.01)	and the second sec
Int	B ₁₀	-11.6	-10-4	-11	-5-4	-5.6	- 5.5	-4-8	-5.1	-4.5	-2.7
$KIDS_{nt} \times I_{nt}$	B ₁₁	0-16	0.28	0.22	-0.55	-0.14	-0-40	-0.49	-0.14	0-3E-05	-0.51
(KIDS., × MAR.,)/.	B12	(0-17) 0-18	(0·02) -0·12	(0-10) 0-07	(0-10) 0-60	(0·01) 0·34	(0-07) 0-52	(0·10) 0·54	(0·01) 0·34	(0-1E-04) -0-05	(0·15) 0·90
	P	(0-16)	(0.02)	(0·10) 0:60	(0-10)	(0·01) 0:008	(0·07) - 0·20	(0·10) - 0·47	(0·01) 0-003	(0·02) -0:24	(0·15) 0·19
AGE _{nt} ~ Int	D ₁₃	(0-49)	(0.003)	(0.26)	(0.17)	(0.001)	(0.01)	(0.17)	(0.001)	(0.01)	(0.005)
$AGE_{nt}^{2} \times I_{nt}$	B ₁₄	0-002 (0-05E-03)	0.002 (0.5E-04)	0-002 (0-3E-03)	0.002 (0.2E-03)	0.002 (0.2E - 04)	0.002 (0.1E - 03)	0.002 (0.2E - 03)	0-001 (0-2E-04)	0.002 (0.1E-03)	0.002 (0.2E-03)
I_{m}^{2}	δ_0	0-002	0.002	0-002	0.001	0.001	0.001	0.6E - 04)	0.001	0.001 (0.3E - 04)	0.3E - 04 (0.1E - 03)
$I_{nr}I_{n,r-1}$	δ_1	-0.001 (0.1E-03)	-0.001 (0.2E - 04)	-0.001 (0.1E-04)	-0.6E - 03 (0.5E - 04)	-0.5E - 03 (0.1E - 05)	-0.6E - 03 (0.4E - 04)	-0-5E-03 (0-5E-04)	-0.5E - 03 (0.1E - 05)	-0.6E - 03 (0.4E - 04)	-0.7E - 03 (0.1E - 03)
$l_{n_l}l_{n,l-2}$	δ_2	-0.7E - 03	-0.7E - 03 (0.2E - 04)	-0.7E - 03 (0.1E - 04)	-0.4E - 03 (0.6E - 04)	-0.4E - 03 (0.1E - 05)	-0.3E - 03 (0.4E - 04)	-0.3E-04)	-0.4E - 03 (0.9E - 05)	-0.3E - 03 (0.5E - 04)	-0.6E - 03 (0.1E - 03)
$I_{nr}I_{n,r-3}$	δ_3	-0.7E-03) (0.1E-03)	-0-8E-03 (0-2E-04)	-0.6E - 03 (0.1E - 04)	-0.3E - 03 (0.5E - 04)	-0.3E - 03 (0.1E - 05)	-0.3E - 03 (0.4E - 03) (0.4E - 04)	-0.2E - 03 (0.5E - 05)	-0.3E-03 (0.9E-05)	-0.2E - 03 (0.4E - 04)	-0.5E-03 (0.1E-03)

† Standard errors in parentheses. a. Participation equation; b. Hours equation; c. Joint estimates.

Column 1: Nonparametric fixed effects. Columns 2, 3 and 4: Time-averaged fixed effects.

-

Image: A matrix and a matrix

э