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Introduction

We study ascending auctions for government-issued financial products.

These are Certificates of Deposit (CDs) issued by the state of Texas to local banks.

The auction format used is an ascending English auction where banks compete on

interest rate.

Bid data displays evidence of bidding frictions.

We formulate a model of bidding in ascending auctions with bidding frictions and

estimate the model from the submitted bid data.
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Introduction

We specify a model with stochastic arrival of bidding opportunities.

Bidders are assumed to play undominated strategies.

The timing of bidder activity within an auction is used to identify the overall

distribution of valuations.

The distribution of valuations is point-identified, but not the valuations of individual

bidders.

Pairs of bids within an auction identify auction-specific unobserved heterogeneity.
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Introduction

Results show that banks private valuation for deposit funds has both higher mean

and variance prior to the 2008 financial crisis.

There is an increase in the monitoring rate in the post-2008 period.

Frictions are costly in terms of both revenue and allocative efficiency:

Auction revenue would increase by 19.6% (pre-2008) and 6.5% (post-2008) without
frictions.

The expected valuation of winning bidders also increases in a frictionless
environment by up to 0.1653 percentage points pre-2008 and 0.0501 percentage
points post-2008.
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Auction Description

The mechanism is an ascending auction lasting 30 minutes.

A reservation interest rate and an upper bound on total available funds is set prior

to bidding, usually $80 million.

During the 30 minute period banks can bid on up to 5 separate parcels by

announcing a quantity and an interest rate.

The minimum quantity is $100,000, the maximum $7 million (with increments of

$100,000).

Each bid is binding and can only be increased throughout the auction.

Funds are allocated to banks offering the most attractive interest rates at the end.

Winning banks pay the interest rate they bid. Losing banks pay nothing.

Partial order-filling is possible.
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Auction Description

Our data set contains 78 auctions from 2006-2010.

There is a pool of 73 potential banks with an average of 24.5 banks entering.

Averaging across auctions, 72% of banks win.

Money left on the table (MLT) is the dollar difference in interest payments for a

winning submission and the highest losing bid.

MLT is $624 (pre) and $1372 (post) per winning bid.

Average national CD rate in the post-2008 period (earliest FDIC data we have)

0.79% per annum.

The average reserve rate between 2008 and 2010 in these auctions at 0.71% is

slightly less.
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Summary Statistics

Table: Summary Statistics on Auctions

Pre Post
Mean (Std. Dev.) Mean (Std. Dev.)

Number of Banks per Auction 27.50 (5.39) 22.82 (6.50)

Number of Bids Per Parcel 13.76 (20.78) 12.18 (23.04)

Proportion of Bids In The Money (INM) 0.67 (0.13) 0.69 (0.12)

Proportion of Bids Out of The Money (OUTM) 0.17 (0.15) 0.14 (0.14)

Proportion of Bids On The Money (ONM) 0.17 (0.07) 0.17 (0.06)

Size of Parcels (millions) 1.63 (0.40) 1.49 (0.44)

Number of Parcels 1.75 (1.13) 1.50 (0.93)

Proportion of Banks who win 0.70 (0.21) 0.74 (0.22)

Annual Reserve Coupon Rate 4.83 (0.45) 0.71 (0.80)

Award Amount to Winning Bank (millions) 3.88 (0.48) 4.51 (0.57)

MLT: (Winning Bid-Highest Losing Bid) 624.30 (2117) 1372.15 (3606)

×(Size of parcel in $)
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Bids

We now present figures describing key features of the bidding process.

The first figure shows that bids are submitted in excess of the lowest provisionally

winning bid, the on-the-money (ONM) rate.

The second figure indicates that a bid on the ONM rate is preceded by a bid close

to the ONM rate.

The third figure show that who banks who submit at provisionally winning

in-the-money (INM) rate, preceded with a bid that is on the ONM rate (but losing

due to time priority).
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Banks’ Information

Banks do not know the current ONM rate when submitting bids.

However, they can use a “creeping” strategy of submitting successive bids to learn

the ONM rate.

A large number of bidders submit ITM bids immediately after reaching the ONM

rate.

Other bidders jump directly ITM without creeping.

The following slide shows all bids from a single auction. The bid data displays:

Jump bids

Creeping used by bidders

ONM rate that rises steadily throughout the auction.
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Submission Times

The next figure is the empirical distributions of initial bid submission times,

submission times of all bids and winning bid submission times.

The middle of the auction has very little bidding activity, with more activity at both

ends.

Many winning bids are submitted prior to the final minutes of the auction.

That winning bids are sometimes submitted in the early stages of the auctions is

further evidence that banks are not incrementally increasing their bids.
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Submission Times

Figure: Empirical Distribution of Order Submission Times
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Submission Times

We then present empirical distributions on reaction times.

Consider Banks who submit INM bids after being pushed OUTM.

We look at the time to return INM.

The second figure depicts the distribution of reaction times at five, 10, and 25

minutes mark.

As the auction progresses monitoring becomes more intense.
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Submission Times

Figure: CDF Reaction Time

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Reaction time in Minutes

P
r

 

 

At 5 Minutes
At 10 Minutes
At 25 Minutes

Barkley, Groeger, & Miller Bidding Frictions September 21, 2017 16 / 45



Summary

1 The number of banks is uncertain until the auction ends.

2 Bidding activity is most intense at the beginning and end of the auction (like a limit

order market).

3 Sniping is not universal, as many winning bids are submitted in the early stages of

the auction.

This rules out observational equivalence to first-price sealed bid auctions, so we
cannot use Guerre, Perrigne, and Vuong (2000) to identify bidder valuations.

4 The interest rate spread of winning bids is notable, in contrast to English auctions.

Most empirical papers on ascending auctions use a frictionless approach, including
Paarsch (1997), Aradillas-Lopez et al (2013), and Freyberger and Larsen (2017).
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Frictionless Test

We can also formally test the assumption of no bidding frictions.

Empirically, a frictionless environment requires that all winning bidders pay the

same price.

Define fW as the distribution of the lowest winning bid and fW as the distribution of

the highest winning bid.

Under the null hypothesis of no frictions, fW = fW a.e.

We perform a nonparametric density comparison test using Li (1996).

We reject the null hypothesis of equal distributions at the 1% confidence level.
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Relation to Haile and Tamer (2003)

Another empirical approach to ascending auctions is the incomplete bidding model

of Haile and Tamer (2003).

They impose two restrictions on bidder behavior:

1 Bidders never bid above their valuation.

2 A bidder never lets another bidder win at a price they are willing to beat.

These two rules allow for a large class of bidding strategies, many of which would

be dominated strategies in our model.

Consider the strategy where each bidder bids exactly their valuation.

This follows both of the Haile-Tamer rules.

However this is strictly dominated in a discriminatory auction.
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Relation to Haile and Tamer (2003)

Our approach differs from Haile-Tamer in that we assume

1∗ Bidders don’t play dominated strategies.

2∗ Frictions place restrictions on when bidders may place bids.

Assumption 1∗ can be seen as strengthening the assumption of bidder rationality

relative to Haile-Tamer.

Assumption 2∗ relaxes the second Haile-Tamer assumption, as frictions may

prevent the highest valuation bidder from winning the auction.
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Model of Bidding Frictions

We formulate a model of bidding in ascending auctions with bidding frictions.

Frictions are present through stochastic arrival of bidding opportunities.

Because bidders may not have the opportunity to respond to other bids, there is no

guarantee that the highest valuation bidders win the auction.

Valuations have a private component and an auction-specific component common

to all bidders.

Bidding opportunity arrival rates are independent of bidder valuations.
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Model of Bidding Frictions

Set of bidders given by I = {1, ..., I}.

Auctions indexed by k = 1, , , K .

Valuation for bidder i in auction k is given by

ṽik ≡ rk + xik + yk .

- rk is auction reserve rate.

- xik is private value signal, an i.i.d. draw from distribution FX .

- yk is auction specific component affecting all bidders, drawn from FY with
E[Y ] = 0.

Xik and Yk are assumed to be independent.

Barkley, Groeger, & Miller Bidding Frictions September 21, 2017 22 / 45



Model of Bidding Frictions

Bidding occurs over a fixed time interval [0, T ].

Bidders face frictions in the form of random arrival of bidding opportunities.

There are a set of probability distributions {Gτ(t) : τ ≤ t}, with gτ(t) the

associated densities, that govern monitoring arrival times.

These arrival processes are activated (i) at the start of the auction and (ii)

whenever a bid is pushed OUTM.

Gτ(t) is the probability that a bidder pushed OUTM at time τ receives another

bidding opportunity at or before time t .
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Model of Bidding Frictions

At each monitoring opportunity j , the action space of a bidder consists of a pair

(bij , bij) ∈ R2
+.

Denoting the ONM rate at time tj by rtj , the bidder first announces a number bij . If

this number is higher than rtj , the bidder learns the ONM rate and proceeds to

make a bid bij .

We assume that if a bidder stops bidding then they exit the auction.

This information structure mimics the “creeping” strategy bidders use prior to

placing a “real” bid, with bidders learning the ONM rate due to time priority.

The history for each bidder is the set hij = {τis, max{bis, rts}, bis}j
s=1, where τis

denotes the time of bidder i ’s s-th monitoring opportunity.

Barkley, Groeger, & Miller Bidding Frictions September 21, 2017 24 / 45



Model of Bidding Frictions

If a bidder’s announcement bij is larger than rtj , then the bidder chooses a bid to

solve

V(hij , rtj ) =

max
bij∈[rtj ,∞)

{
[Pr(bij ≥ r) · (vi − bij)] +
E
[
1{bij < r} · 1{j < J} · 1{vi > rtj+1} · V(hij+1, rtj+1)|hij

] }
where J is the last monitoring opportunity (a random variable) and r is the lowest

winning bid at the end of the auction.

The first term in the sum corresponds to the case where there is not a future

bidding opportunity.

The second term is the case in which the current bid bij is pushed OUTM prior to

the end of the auction and the bidder obtains another chance to bid after being

pushed out.
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Model

The first order condition of the bidder’s problem is

0 =
∂Pr(b > r)

∂b
(v − b)− Pr(b > r)

+
∂

∂b
E
[
1{bij < r} · 1{j < J} · 1{vi > rtj+1} · V(hij+1, rtj+1) |hij

]
The first line is exactly the first-price sealed bid case.

The second term arises from the dynamics of multiple bidding opportunities.

The main barrier is that r and rtj+1 depend on the strategies of all the other players,

which in turn depends on previous bids (and therefore the unobserved valuation).

We would need to solve for the equilibrium in order to know the functional

relationship between these terms.
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Equilibrium Properties

The model may have multiple equilibria, including mixed strategy equilibria.

Solving for equilibria is computationally burdensome, and there is no way of

knowing which equilbirium is being played by bidders.

Instead, we utilize a condition that is weaker than best response but is consistent

with everybody playing their equilibrium strategy.

This has the advantage of being robust to any equilibrium played in the data – in

fact, the presence of multiple equilibria can even aid in estimation.

Specifically, in any equilibrium we will have that

1 Bidders never submit a bid greater than their valuation.

2 Bidders will submit a bid at every bidding opportunity.
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Identification

Identification of FV is based on the fact that whenever a bidder submits an INM bid

we know their valuation is at least as high as the current ONM rate.

If a bidder stops being active, it is because either

1 The ONM rate had passed the bidder’s valuation at their next bidding opportunity

2 Another opportunity to bid was never received.

The last time a bidder is pushed out of the money contains the most information

about their valuation, so the likelihood uses only these observations.

Valutions are independent of the monitoring distribution, so we can identify the bid

arrival distribution directly from reaction times to being pushed OUTM.

Multiple bids within the same auction allow for identification of both the individual

valuations and auction-specific heterogeneity.
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Identification

Let j = 1, ..., J index the events when a bidder is pushed OUTM.

When a bidder is pushed out of the money for the j-th time at to
j , three things can

happen:

1 The bidder submits another bid at time tb
j which is a winning bid. This happens when

another bidding chance is received and b̄ij > r .

2 The bidder submits another bid at time tb
j but this bid is also pushed OUTM (at to

j+1):
another bidding chance is received and b̄ij > rtb

j
.

3 No other bids are submitted by the bidder: either another chance to bid is never
obtained or b̄ij < rtb

j
.

Barkley, Groeger, & Miller Bidding Frictions September 21, 2017 29 / 45



Identification

The likelihoods associated with these three events are

1 Winning bid:

gto
j
(tb

j )× Pr(vi > r |vi > rtb
j−1
) = gto

j
(tb

j )

[
1− FV (r)

1− FV (rtb
J−1

)

]
2 Non-winning bid:

gto
j
(tb

j )× Pr(vi > rtb
j
|vi > rtb

j−1
) = gto

j
(tb

j )

[
1− FV (rtb

j
)

1− FV (rtb
j−1
)

]

3 No future bids:

ρ

∑
s=rtoJ−1

Gto
J
(ts+1)

[
FV (rs+1)

1− FV (rtb
J−1

)
− FV (rs)

1− FV (rtb
J−1

)

]
+ (1− Gto

J
(T )).

where s = 1, ..., ρ indexes increases to the ONM rate during the auction.
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Identification

Taking the product across all times being pushed OUTM yields

L(FV , {Gt}; {to
j , tb

j }J
j=1)

=
J−1

∏
j=1

gto
j
(tb

j )

[
1− FV (rtb

j
)

1− FV (rtb
j−1
)

](
1{i wins}

(
gto

J
(tb

J )

[
1− FV (r)

1− FV (rtb
J−1

)

])
+

1{i loses}

 ρ

∑
s=rtoJik−1

Gto
J
(ts)

[
FV (rts+1)− FV (rts)

1− FV (rtb
Ji−1

)

]
+ (1− Gto

j
(T ))


)

=
J−1

∏
j=1

gto
j
(tb

j )×
(
1{i wins}

(
gto

J
(tb

J ) [1− FV (r)]
)
+

1{i loses}

 ρ

∑
s=rtoJ−1

Gto
J
(ts) [FV (rts+1)− FV (rts)] + (1− Gto

j
(T ))


)
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Identification

Because bidders submit bids at every bidding opportunity, Gt is identified directly

from the response times of bidders to being pushed out of the money.

The distribution FV is identified because the likelihood function is globally concave.

In order to obtain the joint distribution FV1,V2 we use the fact that multiple bids

within the same auction are observed to condition the valuation of one bidder’s

valuation on a lower bound for the second bidder’s valuation.

Specifically, if bidder 1 in auction k submits a bid b1k , then bidder 2’s valuation is a

draw from FV2|V1≥b1k
.

Together, FV and FV2|V1≥a are used to construct the joint distribution FV1,V2 :

FV1,V2(a1, a2) = FV (a1)− Pr(V2 > a2)Pr(V1 < a1|V2 > a2)
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Identification

Recall that Vik is additive in Xik and Yk :

V1k = X1k + Yk

V2k = X2k + Yk

From the lemma of Kotlarksi, the characteristic functions are multiplicative:

ψV1,V2(t1, t2) = ψY (t1 + t2)ψX (t1)ψX (t2)

With the location of one of the variables fixed (we have assumed E[Y ] = 0) the

characteristic functions of Y and X are identified from ψV1,V2 .

Since the characteristic functions are a one-to-one mapping to the distributions FX

and FY are identified.
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Estimation

The distribution of bid arrival times is estimated according to

Ĝt(z) =
∑K

k=1 ∑i∈Ik ∑Ji
j=1 K

(
τ∗kij −t

h

)
1{τk

ij − τ∗kij < z}

∑K
k=1 ∑i∈Ik ∑Ji

j=1 K
(

τ∗kij −t

h

)
where τk

ij is the time a bidder re-enters after being pushed OUTM at τ∗kij .

FV is estimated by maximizing the likelihood across all bidders and auctions:

F̂V = argmax
F

∏
k

∏
i

L(F , {Ĝt}; {to
Ji k , tb

Ji k})

Similarly, the conditional distribution FV1|V2>a is estimated by maximizing the

likelihood given another bidder in the auction has bid at least a:

F̂V1|V2>a = argmax
FV1 |V2

∏
k∈Ka

∏
i 6=ia

L(FV1|V2
, {Ĝt}; {to

Ji k , tb
Ji k})

where Ka is the set of auctions in which a bidder ia submits a bid bia ≥ a.
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Identification and Estimation

With the joint distribution we can generate the characteristic function ψV1,V2 and

use deconvolution methods to obtain the characteristic functions for X and Y , ψX

and ψY .

Characteristic function for ψV1,V2 estimated by

ψ̂V1,V2(t1, t2) = ∑
v1∈V

∑
v2∈V

e(it1v1+it2v2)p̂V1,V2(v1, v2)

where p̂V1,V2 is the estimated pmf for (V1, V2).

Using the deconvolution results of Kotlarski (with this formulation due to Rao

(1992)) yields

ψ̂Y (t) = exp

(∫ t

0

∂

∂u

[
ψ̂V1,V2(u, v)

ψ̂V1,V2(u, 0)ψ̂V1,V2(0, v)

]
u=0

dv

)
(1)

ψ̂X (t) =
ψ̂V1,V2(t, 0)

ψ̂Y (t)
(2)
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Identification and Estimation

We discretize the support of Xik and Yk .

Given the discretization, we map the estimated characteristic functions back into

the probability mass functions according to the inverse Fourier transform:

p̂X (khX ) =
1

2π/hX

∫ π/hX

−π/hX

eitkhX ψ̂X (t)dt

p̂Y (khY ) =
1

2π/hY

∫ π/hY

−π/hY

eitkhY ψ̂Y (t)dt

where k takes integer value and each random variable takes value kh for h > 0.
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Results: Bid Opportunity Arrival Times
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Results: Private Values
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Results: Unobserved Heterogeneity
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Results

Estimates indicate more monitoring post-2008, especially earlier in the auction.

Effect of frictions in determining auction outcomes is reduced.

Private valuation component has higher variance post-2008 compared with

pre-2008.

Unobserved auction-specific term also sees lower dispersion post-2008
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Measurements

Frictions affect auction outcomes through the inability of high-valuation bidders to

respond to being pushed out.

In order to assess how costly frictions are, we bound the expected valuation of

winning bidders and compare this to a frictionless environment.

Our comparison is to a uniform price ascending auction without frictions in which

all winners pay the highest loser’s valuation.

We also compare realized auction revenue to that generated by the uniform price

auction.
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Costs of Bidding Frictions

Let W denote the event of placing a winning bid and W̃ its complement, losing.

The law of iterated expectations, E [v ] can be expressed as a weighted sum of

E [v |W ] and E
[
v
∣∣W̃ ] . Upon rearrangement we obtain:

E [v |W ] =
{

E [v ]− Pr
[
W̃
]

E
[
v
∣∣W̃ ]} /Pr [W ]

Denote by {ts}ρ
s=1 the times at which the reservation price changes, and let tη

denote the time its final bid becomes stale, that is when the reservation price

changes to rη . Denoting by bη its last bid, it follows that rη−1 < bη < rη.

Since the bank would bid at its first opportunity after its bid falls OUTM if its

valuation remains higher than the reservation price then:

E
[
v
∣∣W̃ ] < { ρ

∑
s=η

Gtη (ts)− Gtη (ts+1)

Gtη

(
tρ
) ∫ rs

rη

vf (v)

F (rs)− F
(

rη
)dv

}

A lower bound is derived in a similar manner.
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Costs of Bidding Frictions

Table: Efficiency Measurements

Pre-2008 Post-2008

Lower Bound on E[V |W ] 0.3336 0.2349

Upper Bound on E[V |W ] 0.3468 0.2533

Expected Valuation of Winner, Uniform Price 0.4989 0.2850

% Increase in Revenue using Uniform Price 19.58 % 6.38%
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Costs of Bidding Frictions

The bounds on winners’ expected valutions are tight for both the pre and post 2008

periods.

The absence of frictions leads to significant improvement in allocative efficiency

and revenue, especially prior to the financial crisis.

Less dispersion in valuations and greater monitoring rates in the post-2008

auctions help explain the lower gains in allocative efficiency relative to pre-2008.
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Conclusion

We study ascending price auctions for financial products in local markets and

provide evidence of bidding frictions.

We build a model of bidding in ascending auctions with frictions

The model may have many equilibria.

Identification of the model is accomplished through a restriction to undominated
strategies

The distributions of private values and auction-level heterogeneity are pointwise
identified (but not individual valuations).

Estimate bank valuations before and after the 2008 financial crisis.

Frictions are costly relative to the alternative of a frictionless uniform-price auction.

Bidder valuations appear to have higher variation pre-2008.
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