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Adapting the CCP Framework to Dynamic Games
Players and choices

Consider a dynamic in�nite horizon game for �nite I players:

Thus T = ∞ and I < ∞.

Each player i 2 I makes a choice d (i )t �
�
d (i )1t , . . . , d (i )Jt

�
in period t.

Denote the choices of all the players in period t by:

dt �
�
d (1)t , . . . , d (I )t

�
and denote by:

d (�i )t �
�
d (1)t , . . . , d (i�1)t , d (i+1)t , . . . , d (I )t

�
the choices of f1, . . . , i � 1, i + 1, . . . , Ig in period t, that is all the
players apart from i .
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Adapting the CCP Framework to Dynamic Games
State variables

Denote by zt the state variables of the game that are not iid.

In a typical application involving rival �rms, zt includes the capital of
all the �rms. Although the �rms all face the same state variables,
they a¤ect �rms in di¤erent ways.

We assume all the players observe zt , but it is straightforward to relax
this assumption.

Denote by F (zt+1 jzt , dt ) the probability of zt+1 occurs when the
state variables are zt and the players collectively choose dt .

Similarly let:

Fj
�
zt+1

���zt , d (�i )t

�
� F

�
zt+1

���zt , d (�i )t , d (i )jt = 1
�

denote the probability distribution determining zt+1 given zt when
f1, . . . , i � 1, i + 1, . . . , Ig choose d (�i )t in t and i makes choice j .
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Adapting the CCP Framework to Dynamic Games
Payo¤s and information

Suppose ε
(i )
t �

�
ε
(i )
1t , . . . , ε(i )Jt

�
, identically and independently

distributed with density g
�

ε
(i )
t

�
, a¤ects the payo¤s of i in t.

Also let ε
(�i )
t �

�
ε
(1)
t , . . . , ε(i�1)t , ε

(i+1)
t , . . . , ε(I )t

�
.

The systematic component of current utility or payo¤ to player i in
period t form taking choice j when everybody else chooses d (�i )t and

the state variables are zt is denoted by U
(i )
j

�
zt , d

(�i )
t

�
.

Denoting by β 2 (0, 1) the discount factor, the summed discounted
payo¤ to player i throughout the course of the game is:

∑T
t=1 ∑J

j=1 βt�1d (i )jt
h
U (i )j

�
zt , d

(�i )
t

�
+ ε

(i )
jt

i
Players noncooperatively maximize their expected utilities, moving
simultaneously each period. Thus i does not condition on d (�i )t when

making his choice at date t, but only sees
�
zt , ε

(i )
t

�
.
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Adapting the CCP Framework to Dynamic Games
Markov strategies

This is a stationary environment and we focus on Markov decision
rules, which can be expressed d (i )j

�
zt , ε

(i )
t

�
.

Let d (�i )
�
zt , ε

(�i )
t

�
denote the strategy of every player but i :0@ d (1)

�
zt , ε

(1)
t

�
, . . . , d (i�1)

�
zt , ε

(i�1)
t

�
, d (i+1)

�
zt , ε

(i+1)
t

�
,

d (i+2)
�
zt , ε

(i+2)
t

�
. . . , d (I )

�
zt , ε

(I )
t

� 1A
Then the expected value of the game to i from playing d (i )j

�
zt , ε

(i )
t

�
when everyone else plays d

�
zt , ε

(�i )
t

�
is:

V (i ) (z1) �
E
n

∑∞
t=1 ∑J

j=1 βt�1d (i )j
�
zt , ε

(i )
t

� h
U (i )j

�
zt , d

�
zt , ε

(�i )
t

��
+ ε

(i )
jt

i
jz1
o
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Adapting the CCP Framework to Dynamic Games
Choice probabilities generated by Markov strategies

Integrating over ε
(i )
t we obtain the j th conditional choice probability

for the i th player at t as p(i )j (zt ):

p(i )j (zt ) =
Z
d (i )j

�
zt , ε

(i )
t

�
g
�

ε
(i )
t

�
dε
(i )
t

Let P
�
d (�i )t jzt

�
denote the joint probability �rm i�s competitors

choose d (�i )t conditional on the state variables zt .

Since ε
(i )
t is distributed independently across i 2 f1, . . . , Ig:

P
�
d (�i )t jzt

�
=

I

∏
i 0=1
i 0 6=i

 
J

∑
j=1
d (i

0)
jt p

(i 0)
j (zt )

!
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Adapting the CCP Framework to Dynamic Games
Markov perfect equilibrium

The strategy
n
d (i )

�
zt , ε

(i )
t

�oI
i=1

is a Markov perfect equilibrium if,

for all
�
i , zt , ε

(i )
t

�
, the best response of i to d (�i )

�
zt , ε

(�i )
t

�
is

d (i )
�
zt , ε

(i )
t

�
when everybody uses the same strategy thereafter.

That is, suppose the other players collectively use d (�i )
�
zt , ε

(�i )
t

�
in

period t, and V (i ) (zt+1) is formed from
n
d (i )

�
zt , ε

(i )
t

�oI
i=1
.

Then d (i )
�
zt , ε

(i )
t

�
solves for i choosing j to maximize:

∑
d (�i )t

P
�
d (�i )t jzt

�8<: U (i )j
�
zt , d

(�i )
t

�
+β ∑Z

z=1 V
(i ) (z) Fj

�
z
���zt , d (�i )t

� 9=;+ ε
(i )
jt
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Adapting the CCP Framework to Dynamic Games
Connection to Individual Optimization

In equilibrium, the systematic component of the current utility of
player i in period t, as a function of zt , the state variables for game,
and his own decision j , is:

u(i )j (zt ) = ∑
d (�i )t

P
�
d (�i )t jzt

�
U (i )j

�
zt , d

(�i )
t

�
Similarly the probability transitioning from zt to zt+1 given action j
by �rm i is given by:

f (i )j
�
zt+1

���z (i )t �
= ∑

d (�i )t

P
�
d (�i )t

���z (i )t �
Fj
�
zt+1

���zt , d (�i )t

�
The setup for player i is now identical to the optimization problem
described in the second lecture for a stationary environment.
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Adapting the CCP Framework to Dynamic Games
CCP Estimation

Note that:
1 in contrast to ML we do not solve for the equilibrium.
2 estimation is based on conditions that are satis�ed by every Markov
perfect equilibrium.

3 there might be multiple equilibria, but (for now) we assume every �rm
is playing in the same market, or that every market plays the same
equilibrium.

4 the estimation approach is identical to the approach we described in
the individual optimization problem.

Thus the basic di¤erence between estimating this dynamic game and
an individual optimization problem using a CCP estimator revolves
around how much the payo¤s of each player are a¤ected by state
variables partially determined by other players through their
conditional choice probabilities.
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Entry Exit Game
Choice Variables

Suppose there is a �nite maximum number of �rms in a market at
any one time denoted by I .

If a �rm exits, the next period an opening occurs to a potential
entrant, who may decide to exercise this one time option, or stay out.

At the beginning of each period every incumbent �rm has the option
of quitting the market or staying one more period.

Let d (i )t �
�
d (i )1t , d

(i )
2t

�
, where d (i )1t = 1 means i exits or stays out of

the market in period t, and d (i )2t = 1 means i enters or does not exit.

If d (i )2t = 1 and d
(i )
1,t�1 = 1 then the �rm in spot i at time t is an

entrant, and if d (i )2,t�1 = 1 the spot i at time t is an incumbent.
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Entry Exit Game
State Variables

In this application there are three components to the state variables
and zt = (x1, x2t , st ).
The �rst is a permanent market characteristic, denoted by x1, and is
common across �rms in the market. Each market faces an equal
probability of drawing any of the possible values of x1 where
x1 2 f1, 2, . . . , 10g.
The second, x2t , is whether or not each �rm is an incumbent,
x2t � fd (1)2t�1, . . . , d (I )2t�1g. Entrants pay a start up cost, making it
more likely that stayers choose to �ll a slot than an entrant.
A demand shock st 2 f1, . . . , 5g follows a �rst order Markov chain.
In particular, the probability that st+1 = st is �xed at π 2 (0, 1), and
probability of any other state occurring is equally likely:

Pr fst+1 jst g =
�

π if st+1 = st
(1� π) /4 if st+1 6= st
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Entry Exit Game
Price and Revenue

Each active �rm produces one unit so revenue, denoted by yt , is just
price.

Price is determined by:

1 the supply of active �rms in the market, ∑Ii=1 d
(i )
2t

2 a permanent market characteristic, x1
3 the Markov demand shock st
4 another temporary shock, denoted by ηt , distributed iid standard
normal distribution, revealed to each market after the entry and exit
decisions are made.

The price equation is:

yt = α0 + α1x1 + α2st + α3
I

∑
i=1
d (i )2t + ηt
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Entry Exit Game
Expected Pro�ts conditional on competition

We assume costs comprise a choice speci�c disturbance ε
(i )
jt that is

privately observed, plus a linear function of zt .
Net current pro�ts for exiting incumbent �rms, and potential entrants
who do not enter, are ε

(i )
1t . Thus U

(i )
1

�
x (i )t , s

(i )
t , d

(�i )
t

�
� 0.

Current pro�ts from being active are the sum of
�

ε
(i )
2t + ηt

�
and:

U (i )2
�
x (i )t , s

(i )
t , d

(�i )
t

�
� θ0 + θ1x1 + θ2st + θ3

I

∑
i 0=1
i 0 6=i

d (i
0)

2t + θ4d
(i )
1,t�1

where θ4 is the startup cost that only entrants pay.
In equilibrium E (ηt ) = 0 so:

u(i )j (xt , st ) = θ0 + θ1x1 + θ2st + θ3
I

∑
i 0=1
i 0 6=i

p(i
0)

2 (xt , st ) + θ4d
(i )
1,t�1
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Entry Exit Game
Terminal Choice Property

We assume the �rm�s private information, ε
(i )
jt , is distributed Type 1

extreme value.

Since exiting is a terminal choice, with the exit payo¤ normalized to
zero, the Type 1 extreme value assumption implies that the
conditional value function for being active is:

v (i )2 (xt , st ) = u(i )2 (xt , st )

�β ∑
x2X

∑
s2S

�
ln
h
p(i )1 (x , s)

i�
f (i )2 (x , s jxt , st )

The future value term is then expressed as a function solely of the
one-period-ahead probabilities of exiting and the transition
probabilities of the state variables.
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Entry Exit Game
Monte Carlo

The number of �rms in each market is set to six and we simulated
data for 3,000 markets.

The discount factor is set at β = 0.9.

Starting at an initial date with six potential entrants in the market,
we solved the model, ran the simulations forward for twenty periods,
and used the last ten periods to estimate the model.

The key di¤erence between this Monte Carlo and the renewal Monte
Carlo is that the conditional choice probabilities have an additional
e¤ect on both current utility and the transitions on the state variables
due to the e¤ect of the choices of the �rm�s competitors on pro�ts.
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Entry Exit Game
Extract from Table 2 of Arcidiacono and Miller (2011)
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