Sealed Bid Auctions

Robert A. Miller

47-901 Lecture 1

January 2024

Introduction

Auction formats

- In first price sealed bid (FPSB) auctions the highest bidder wins and pays his bid.
- In second price sealed bid auctions (SPSB) the highest bidder wins and pays the bid of highest losing bidder.
- In Dutch auctions (reducing the price until a player accepts the offer) only the winning bid is ever observed; Dutch auctions are strategically equivalent to FPSB auctions.
- In Japanese (button) auctions players exit as the auctioneer raises the price and the winner pays the price at which the only other remaining bidder exits.
- Note that players update their information sets in Japanese auctions so are not necessarily strategically equivalent to SPSB auctions.

Independent and identically distributed private values in a first price sealed bid auction

- We first consider a first price sealed bid (FPSB) auction for N players with independent private values (IPV).
- By FPSB we mean that each player $n \in \{1, ..., N\}$ simultaneously submits a bid denoted by $b_n \in \mathbf{R}^+$, and that the player submitting the highest bid is awarded the (single) object up for auction, and pays what he or she bid.
- By IPV we mean that for each $n \in \{1, ..., N\}$ the value of owning the object is v_n where $v_n \in \mathbf{V}$ independently drawn from a common distribution, F(v).

Best replies in equilibrium

• Let W(b) denote the probability of winning the auction with bid b. That is:

$$W(b) \equiv \Pr\{b_k \leq b \text{ for all } k = 1, ..., N\}$$

Then the maximization problem faced by player n can be written as:

$$\max_{b}(v_{n}-b)W(b)$$

The first order condition (FOC) is:

$$(v_n - b_n)W'(b_n) - W(b_n) = 0$$
 (1)

The second order condition (SOC) of the optimization problem is:

$$0 > SOC \equiv \frac{\partial}{\partial b}FOC = \frac{\partial}{\partial b} [(v - b)W'(b) - W(b)]$$
$$= (v - b)W''(b) - 2W'(b)$$

Pure strategy best replies are increasing in valuations

• Totally differentiating the FOC with respect to b and v yields:

$$0=W'\left(b_{n}\right)dv_{n}+\left[\left(v_{n}-b_{n}\right)W''\left(b_{n}\right)-2W'\left(b_{n}\right)\right]db_{n}$$

and hence:

$$\frac{db_{n}}{dv_{n}} = \frac{-W'(b_{n})}{(v_{n} - b_{n})W''(b_{n}) - 2W'(b_{n})} > 0$$

because $W'\left(b_{n}\right)>0$ and the denominator of the quotient is the SOC.

• We infer that if players are in a pure strategy equilibrium with an interior solution, then b_n is increasing in v_n .

Bayesian Nash Equilibrium with monotone bidding

- From now on we assume that players are in a (pure strategy) Bayesian equilibrium with bids that are monotone increasing in valuations.
- That is we consider Bayesian Nash Equilibrium (BNE) in which bidders follow a strategy $\beta: \mathbf{V} \to \mathbf{B} \equiv [0, \infty)$ where $\beta(v)$ is increasing in v.
- Then $\beta(v)$ has an inverse, which we denote by $\alpha: \mathbf{B} \to \mathbf{V}$ such that $\alpha[\beta(v)] = v$ for all v.
- Letting G(b) denote the distribution of bids, it follows that:

$$W(b) \equiv \Pr\{b_k \leq b_n \text{ for all } k = 1, \dots, N\} = G(b_n)^{N-1}$$

• From the monotonicity property of the BNE:

$$G(b) = F(\alpha(b))$$

Identification when all bids are observed from the probability of winning

- Assume our data set consists of all the bids recorded in I auctions in which the same equilibrium is played.
- Let b_n^i for $n \in \{1, ..., N\}$ and $i \in \{1, ..., I\}$ denote the bid by player n in the i^{th} auction.
- The probability of winning the auction, W(b), and its derivative W'(b) are identified.
- We rewrite the FOC, Equation (1) as:

$$v_n^i = b_n^i + \frac{W\left(b_n^i\right)}{W'\left(b_n^i\right)} \tag{2}$$

• This shows v_n^i is identified, and therefore so is F(v).

Identification when all bids are observed from the bidding distribution

- Alternatively note that the probability distribution of bids and its density, G(b) and G'(b), are identified.
- But the probability n wins with b_n is:

$$W(b_n)=G(b_n)^{N-1}$$

implying

$$W'(b_n) = (N-1) G(b_n)^{N-2} G'(b_n)$$

We rewrite the FOC, Equation (1) as:

$$v_n^i = b_n^i + \frac{W(b_n^i)}{W'(b_n^i)} = b_n^i + \frac{G(b_n^i)}{(N-1)G'(b_n^i)}$$
(3)

• This shows v_n^i and hence F(v) can also be directly identified off the bidding distribution G(b).

The distribution of winning bids

- Now suppose our data set consists of only the winning bid recorded in
 I auctions in which the same equilibrium is played.
- Let b^i for $i \in \{1, ..., I\}$ denote the winning bid in the i^{th} auction.
- ullet Thus the distribution of winning bids, denoted by $H\left(b^{i}
 ight)$, is identified.
- Since the winning bid is defined as the highest one, H(b) is just the probability that all the bids are less than b, implying:

$$H(b) = \text{Pr}\left\{b_n^i \leq b \text{ for all } n = 1, \dots, N\right\} = G(b)^N$$

Consequently:

$$G(b) = H(b)^{\frac{1}{N}} \tag{4}$$

and

$$G'(b) = \frac{1}{N} H(b)^{\frac{1}{N} - 1} H'(b)$$
 (5)

• This shows the bidding distribution is identified from the data generating process of the winner's bid.

Identification when only the winning bid is observed

Substituting Equations (4) and (5) back into Equation (3) gives:

$$v^{i}=b^{i}+rac{G\left(b^{i}
ight)}{\left(N-1
ight)G^{\prime}\left(b^{i}
ight)}=b^{i}+rac{NH\left(b
ight)}{\left(N-1
ight)H^{\prime}\left(b
ight)}$$

- This identifies the winning valuations, and hence their distribution, denoted by $F_W(v)$.
- But the distribution of the winning valuations is a one to one mapping of the distribution of all the valuations:

$$F_W(v) = \Pr\{v_n \le v \text{ for all } n = 1, ..., N\} = F(v)^N$$

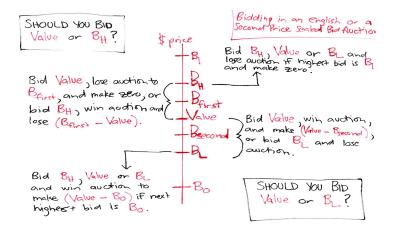
• Therefore F(v) is identified off the winning bids alone using the equation:

$$F(v) = F_W(v)^{\frac{1}{N}}$$

A second price sealed bid (SPSB) auction with private values

- Now suppose as before:
 - each bidder knows her own valuation;
 - makes sealed bid (that is bids simultaneously).
- But instead of a FPSB auction, consider a SPSB auction, where the highest bidder wins the auction but only pays the second highest bid.
- Now it is a weakly dominant strategy for (each) n to bid her expected valuation, v_n .
- Intuitively, compared with bidding v_n :
 - bidding more implies winning some auctions that yield negative expected value, but leaves unchanged the expected value of any other auction that would be won;
 - bidding less implies losing some auctions that yield positive expected value, but leaves unchanged the expected value of any other auction that she would win.

A picture proof



Distribution of the second highest valuation

- Let F(v) denote the distribution of valuations as before.
- Note first the obvious point that because players bid their valuations in SPSB auctions with private valuations, F(v) is trivially identified if all the bids are observed.
- Now suppose only the winning price is observed.
- Then the probability distribution of the second highest valuation, which we now denote by $F_{N-1,N}(v)$, is identified.

Distribution of the second highest valuation

- More generally, let $F_{i,N}(v)$ denote the distribution of the i^{th} order statistic. Note that:
 - The probability that the first i-1 draws are less than v and the next N-i are greater than v is:

$$\int_{\underline{\nu}}^{F(\nu)} t^{i-1} \left(1-t\right)^{N-i} dt$$

• The number of permutations with exactly i-1 draws less than v from N-1 draws is:

$$\binom{N-1}{i} = \frac{(N-1)!}{(N-i)!(i-1)!}$$

- Any one of N draws can be the i^{th} highest valuation.
- Therefore:

$$F_{i,N}(v) = \frac{N!}{(N-i)!(i-1)!} \int_{v}^{F(v)} t^{i-1} (1-t)^{N-i} dt$$
 (6)

Identification of the probability distribution of valuations

- Clearly \underline{v} is identified, because a consistent estimate of \underline{v} is the lowest winning payment observed in the data.
- We now show by a contradiction argument the mapping from $F_{i,N}(v)$ to F(v) is invertible.
- Suppose there are two (or more solutions) solutions to (6):
 - ullet Denote them by by $F_{1}\left(v
 ight)$ and $F_{2}\left(v
 ight) .$
 - Substitute $F_i(v)$ into (6) for $i \in \{1, 2\}$.
 - Difference the two resulting equations.
 - Divide through by N!/(N-i)!(i-1)! to obtain:

$$\int_{\underline{\nu}}^{F_1(\nu)} t^{i-1} \left(1-t\right)^{N-i} dt = \int_{\underline{\nu}}^{F_2(\nu)} t^{i-1} \left(1-t\right)^{N-i} dt$$

• Since $t^{i-1}\left(1-t\right)^{N-i}>0$ it immediately follows that $F_{1}\left(v
ight)=F_{2}\left(v
ight)$.

Notation and terminology for sealed bid auctions

- There are *N* risk neutral bidders. Bidder *n*:
 - has valuation v_n , the utility gain from winning the auction.
 - receives signal $x_n \equiv v_n + \epsilon_n$, where $E[\epsilon_n | x_n] = 0$.
- Denote $x \equiv (x_1, \ldots, x_N)$ and $v \equiv (v_1, \ldots, v_N)$ and $y \equiv (v, x)$.
- We often assume y is affiliated, higher realizations of one component associated with higher realizations of the others.
- This means for random variable Y with $pdf\ f_Y(y)$, where \lor (\land) denotes the component wise maximum (minimum):

$$f_{Y}\left(y\vee y'\right)f_{Y}\left(y\wedge y'\right)\geq f_{Y}\left(y\right)f_{Y}\left(y'\right)$$

- Noting $x_n \equiv E[v_n | x_n]$, we say bidders have:
 - private valuations if $E[v_n|x] = x_n$;
 - common valuations if $E[v_n | x_1, ..., x_N]$ is strictly increasing in all $x_m \in \{x_1, ..., x_N\}$.
 - pure common values if $E[v_m|x] = E[v_n|x]$ for all m and n.

Affiliation

• If $f_{Y}(y) > 0$ and twice differentiable then affiliation is equivalent to:

$$\partial f_Y(y)/\partial y_n\partial y_m \geq 0$$

• Also if Y_n and Y_m are affiliated, then for all $y_n \geq y_n'$ and $y_m \geq y_m'$:

$$f_{Y}(y_{n}, y_{m}) f_{Y}(y'_{n}, y'_{m}) \geq f_{Y}(y_{n}, y'_{n}) f_{Y}(y_{m}, y'_{m})$$

$$\iff \frac{f(y_{n} | y_{m})}{f(y_{n} | y'_{n})} f(y_{m}) f(y'_{n}) \geq \frac{f(y'_{m} | y_{m})}{f(y'_{m} | y'_{n})} f(y_{m}) f(y'_{n})$$

$$\iff \frac{f(y_{n} | y_{m})}{f(y_{n} | y'_{n})} \geq \frac{f(y'_{m} | y_{m})}{f(y'_{m} | y'_{n})}$$

- In words the CDF $F(y|y_m)$ dominates $F(y|y'_n)$ in terms of the likelihood ratio and hence one can show:
 - $F(y|y_m)$ first order dominates $F(y|y'_n)$.
 - the likelihood ratio $f(y|y_m)/f(y|y'_n)$ is increasing in y.

Equilibrium best responses in second price auctions with private values

- The literature focuses on perfect Bayesian equilibria in weakly undominated pure strategies (Athey and Haile, 2006).
- Let $b_n \equiv \beta_n(x_n, N)$ denote the equilibrium strategy of bidder n.
- In a second price auction with private values, it is a weakly dominant strategy for (each) *n* to bid his expected valuation, setting:

$$\beta_n(x_n, N) = x_n \equiv E[v_n | x_n]$$

• Note the same logic applies to n individually if $v_n = x_n$, regardless of the correlation structure of y and the other bidders' information.

Equilibrium best responses in first price auctions with private values

 In a private value FPSB auction denote the CDF for the maximum equilibrium bid of the nth bidder's rivals, conditional on the signal of n, by:

$$G_{m_n}(b_m | x_n, N) = \Pr\left[\max_{n' \in N \setminus n} \{b_{n'}\} \leq b_m | x_n, N\right]$$

• Then b_n solves:

$$b_{n} = \arg\max_{b} \int_{-\infty}^{b} (x_{n} - b) G'_{m_{n}}(b_{m} | x_{n}, N) db_{m}$$

• The first order condition is:

$$x_n = b_n + \frac{G_{m_n}(b_n | x_n, N)}{G'_{m_n}(b_n | x_n, N)}$$

• Note this FOC reduces to (2) when $v_n = x_n$ and the valuations of the bidders are iid; in any case both $W(b_n)$ and $G_{m_n}(b_n|x_n, N)$ represent the probability of n winning the auction with bid b_n .

Equilibrium best responses in first price auctions with common values

 At a superficial level, this first order condition takes a similar form in a common value auction. Define:

$$v_{n}\left(x_{n},x_{n'},N
ight)=E\left[v_{n}\left|x_{n}
ight.$$
 and $\max_{n'\in N\setminus n}\left\{b_{n'}
ight\}=eta_{n}\left(x_{n'},N
ight)
ight]$

• Similar to the private values case b_n solves:

$$b_{n} = \arg\max_{b} \int_{-\infty}^{b} \left[v_{n} \left(x_{n}, \beta_{n}^{-1} \left(b_{m}, N \right), N \right) - b \right] G'_{m_{n} \mid b} \left(b_{m} \mid x_{n}, N \right) db_{m}$$

• The first order condition is:

$$v_{n}\left(x_{n},x_{n},N\right)=b_{n}+\frac{G_{m_{n}\mid b}\left(b_{n}\mid x_{n},N\right)}{G_{m_{n}\mid b}^{\prime}\left(b_{n}\mid x_{n},N\right)}$$

Identification in FPSB Auctions with Private Values

When all the bids are observed

• Assume $x_n = v_n$. From the first order condition:

$$x_{n} = b_{n} + \frac{G_{m_{n}}(b_{n}|x_{n}, N)}{G'_{m_{n}}(b_{n}|x_{n}, N)}$$

• Recall from its definition that $G_{m_n}(b_n|x_n, N)$ is the probability that n wins the auction with b_n :

$$G_{m_n}(b_n|x_n, N) = \Pr\left[\max_{n' \in N \setminus n} \{b_{n'}\} \leq b_n|x_n, N\right]$$

- Thus if all the bids are observed then $G_{m_n}(b_n|x_n, N)$ is identified.
- Hence v_n is identified (for all bidders in each sampled auction).
- Therefore the probability distribution of (v_1, \ldots, v_N) in this specialization is identified for any correlation structure.

Identification Fails in Common Value FPSB Auctions

When all the bids are observed

• Recall that we defined:

$$v_n(x_n, x_{n'}, N) = E\left[v_n \middle| x_n \text{ and } \max_{n' \in N \setminus n} \{b_{n'}\} = \beta_n(x_{n'}, N)\right]$$

and derived:

$$v_n(x_n, x_n, N) = b_n + \frac{G_{m_n}(b_n | x_n, N)}{G'_{m_n}(b_n | x_n, N)}$$

- The basic problem is that conditional on N the RHS gives a number for each n, but the LHS is not a primitive of the model.
- Note that every common value model is observationally equivalent to a private value model found by setting $v_n = v_n(x_n, x'_n, N)$.
- Thus two common value models with possibly different $v_n(x_n, x_{n'}, N)$ but the same $v_n(x_n, x_n, N)$ are (also) observationally equivalent.

January 2024