Sealed Bid Auctions

Robert A. Miller

47-901 Lecture 1
January 2024

Introduction

Auction formats

- In first price sealed bid (FPSB) auctions the highest bidder wins and pays his bid.
- In second price sealed bid auctions (SPSB) the highest bidder wins and pays the bid of highest losing bidder.
- In Dutch auctions (reducing the price until a player accepts the offer) only the winning bid is ever observed; Dutch auctions are strategically equivalent to FPSB auctions.
- In Japanese (button) auctions players exit as the auctioneer raises the price and the winner pays the price at which the only other remaining bidder exits.
- Note that players update their information sets in Japanese auctions so are not necessarily strategically equivalent to SPSB auctions.

Example

Independent and identically distributed private values in a first price sealed bid auction

- We first consider a first price sealed bid (FPSB) auction for N players with independent private values (IPV).
- By FPSB we mean that each player $n \in\{1, \ldots, N\}$ simultaneously submits a bid denoted by $b_{n} \in \mathbf{R}^{+}$, and that the player submitting the highest bid is awarded the (single) object up for auction, and pays what he or she bid.
- By IPV we mean that for each $n \in\{1, \ldots, N\}$ the value of owning the object is v_{n} where $v_{n} \in \mathbf{V}$ independently drawn from a common distribution, $F(v)$.

Example

Best replies in equilibrium

- Let $W(b)$ denote the probability of winning the auction with bid b. That is:

$$
W(b) \equiv \operatorname{Pr}\left\{b_{k} \leq b \text { for all } k=1, \ldots, N\right\}
$$

- Then the maximization problem faced by player n can be written as:

$$
\max _{b}\left(v_{n}-b\right) W(b)
$$

- The first order condition (FOC) is:

$$
\begin{equation*}
\left(v_{n}-b_{n}\right) W^{\prime}\left(b_{n}\right)-W\left(b_{n}\right)=0 \tag{1}
\end{equation*}
$$

- The second order condition (SOC) of the optimization problem is:

$$
\begin{aligned}
0>S O C \equiv \frac{\partial}{\partial b} F O C & =\frac{\partial}{\partial b}\left[(v-b) W^{\prime}(b)-W(b)\right] \\
& =(v-b) W^{\prime \prime}(b)-2 W^{\prime}(b)
\end{aligned}
$$

Example

```
Pure strategy best replies are increasing in valuations
```

- Totally differentiating the FOC with respect to b and v yields:

$$
0=W^{\prime}\left(b_{n}\right) d v_{n}+\left[\left(v_{n}-b_{n}\right) W^{\prime \prime}\left(b_{n}\right)-2 W^{\prime}\left(b_{n}\right)\right] d b_{n}
$$

and hence:

$$
\frac{d b_{n}}{d v_{n}}=\frac{-W^{\prime}\left(b_{n}\right)}{\left(v_{n}-b_{n}\right) W^{\prime \prime}\left(b_{n}\right)-2 W^{\prime}\left(b_{n}\right)}>0
$$

because $W^{\prime}\left(b_{n}\right)>0$ and the denominator of the quotient is the SOC.

- We infer that if players are in a pure strategy equilibrium with an interior solution, then b_{n} is increasing in v_{n}.

Example

Bayesian Nash Equilibrium with monotone bidding

- From now on we assume that players are in a (pure strategy) Bayesian equilibrium with bids that are monotone increasing in valuations.
- That is we consider Bayesian Nash Equilibrium (BNE) in which bidders follow a strategy $\beta: \mathbf{V} \rightarrow \mathbf{B} \equiv[0, \infty)$ where $\beta(v)$ is increasing in v.
- Then $\beta(v)$ has an inverse, which we denote by $\alpha: \mathbf{B} \rightarrow \mathbf{V}$ such that $\alpha[\beta(v)]=v$ for all v.
- Letting $G(b)$ denote the distribution of bids, it follows that:

$$
W(b) \equiv \operatorname{Pr}\left\{b_{k} \leq b_{n} \text { for all } k=1, \ldots, N\right\}=G\left(b_{n}\right)^{N-1}
$$

- From the monotonicity property of the BNE:

$$
G(b)=F(\alpha(b))
$$

Example

Identification when all bids are observed from the probability of winning

- Assume our data set consists of all the bids recorded in I auctions in which the same equilibrium is played.
- Let b_{n}^{i} for $n \in\{1, \ldots, N\}$ and $i \in\{1, \ldots, I\}$ denote the bid by player n in the $i^{t h}$ auction.
- The probability of winning the auction, $W(b)$, and its derivative $W^{\prime}(b)$ are identified.
- We rewrite the FOC, Equation (1) as:

$$
\begin{equation*}
v_{n}^{i}=b_{n}^{i}+\frac{W\left(b_{n}^{i}\right)}{W^{\prime}\left(b_{n}^{i}\right)} \tag{2}
\end{equation*}
$$

- This shows v_{n}^{i} is identified, and therefore so is $F(v)$.

Example

Identification when all bids are observed from the bidding distribution

- Alternatively note that the probability distribution of bids and its density, $G(b)$ and $G^{\prime}(b)$, are identified.
- But the probability n wins with b_{n} is:

$$
W\left(b_{n}\right)=G\left(b_{n}\right)^{N-1}
$$

implying

$$
W^{\prime}\left(b_{n}\right)=(N-1) G\left(b_{n}\right)^{N-2} G^{\prime}\left(b_{n}\right)
$$

- We rewrite the FOC, Equation (1) as:

$$
\begin{equation*}
v_{n}^{i}=b_{n}^{i}+\frac{W\left(b_{n}^{i}\right)}{W^{\prime}\left(b_{n}^{i}\right)}=b_{n}^{i}+\frac{G\left(b_{n}^{i}\right)}{(N-1) G^{\prime}\left(b_{n}^{i}\right)} \tag{3}
\end{equation*}
$$

- This shows v_{n}^{i} and hence $F(v)$ can also be directly identified off the bidding distribution $G(b)$.

Example

The distribution of winning bids

- Now suppose our data set consists of only the winning bid recorded in I auctions in which the same equilibrium is played.
- Let b^{i} for $i \in\{1, \ldots, I\}$ denote the winning bid in the $i^{t h}$ auction.
- Thus the distribution of winning bids, denoted by $H\left(b^{i}\right)$, is identified.
- Since the winning bid is defined as the highest one, $H(b)$ is just the probability that all the bids are less than b, implying:

$$
H(b)=\operatorname{Pr}\left\{b_{n}^{i} \leq b \text { for all } n=1, \ldots, N\right\}=G(b)^{N}
$$

- Consequently:

$$
\begin{equation*}
G(b)=H(b)^{\frac{1}{N}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
G^{\prime}(b)=\frac{1}{N} H(b)^{\frac{1}{N}-1} H^{\prime}(b) \tag{5}
\end{equation*}
$$

- This shows the bidding distribution is identified from the data generating process of the winner's bid.

Example

Identification when only the winning bid is observed

- Substituting Equations (4) and (5) back into Equation (3) gives:

$$
v^{i}=b^{i}+\frac{G\left(b^{i}\right)}{(N-1) G^{\prime}\left(b^{i}\right)}=b^{i}+\frac{N H(b)}{(N-1) H^{\prime}(b)}
$$

- This identifies the winning valuations, and hence their distribution, denoted by $F_{W}(v)$.
- But the distribution of the winning valuations is a one to one mapping of the distribution of all the valuations:

$$
F_{W}(v)=\operatorname{Pr}\left\{v_{n} \leq v \text { for all } n=1, \ldots, N\right\}=F(v)^{N}
$$

- Therefore $F(v)$ is identified off the winning bids alone using the equation:

$$
F(v)=F_{W}(v)^{\frac{1}{N}}
$$

Another Example

- Now suppose as before:
- each bidder knows her own valuation;
- makes sealed bid (that is bids simultaneously).
- But instead of a FPSB auction, consider a SPSB auction, where the highest bidder wins the auction but only pays the second highest bid.
- Now it is a weakly dominant strategy for (each) n to bid her expected valuation, v_{n}.
- Intuitively, compared with bidding v_{n} :
- bidding more implies winning some auctions that yield negative expected value, but leaves unchanged the expected value of any other auction that would be won;
- bidding less implies losing some auctions that yield positive expected value, but leaves unchanged the expected value of any other auction that she would win.

Another Example
A picture proof

Another Example

Distribution of the second highest valuation

- Let $F(v)$ denote the distribution of valuations as before.
- Note first the obvious point that because players bid their valuations in SPSB auctions with private valuations, $F(v)$ is trivially identified if all the bids are observed.
- Now suppose only the winning price is observed.
- Then the probability distribution of the second highest valuation, which we now denote by $F_{N-1, N}(v)$, is identified.

Another Example

Distribution of the second highest valuation

- More generally, let $F_{i, N}(v)$ denote the distribution of the $i^{t h}$ order statistic. Note that:
- The probability that the first $i-1$ draws are less than v and the next $N-i$ are greater than v is:

$$
\int_{\underline{v}}^{F(v)} t^{i-1}(1-t)^{N-i} d t
$$

- The number of permutations with exactly $i-1$ draws less than v from $N-1$ draws is:

$$
\binom{N-1}{i}=\frac{(N-1)!}{(N-i)!(i-1)!}
$$

- Any one of N draws can be the $i^{t h}$ highest valuation.
- Therefore:

$$
\begin{equation*}
F_{i, N}(v)=\frac{N!}{(N-i)!(i-1)!} \int_{\underline{v}}^{F(v)} t^{i-1}(1-t)^{N-i} d t \tag{6}
\end{equation*}
$$

Another Example

Identification of the probability distribution of valuations

- Clearly \underline{v} is identified, because a consistent estimate of \underline{v} is the lowest winning payment observed in the data.
- We now show by a contradiction argument the mapping from $F_{i, N}(v)$ to $F(v)$ is invertible.
- Suppose there are two (or more solutions) solutions to (6):
- Denote them by by $F_{1}(v)$ and $F_{2}(v)$.
- Substitute $F_{i}(v)$ into (6) for $i \in\{1,2\}$.
- Difference the two resulting equations.
- Divide through by $N!/(N-i)$! $(i-1)$! to obtain:

$$
\int_{\underline{v}}^{F_{1}(v)} t^{i-1}(1-t)^{N-i} d t=\int_{\underline{v}}^{F_{2}(v)} t^{i-1}(1-t)^{N-i} d t
$$

- Since $t^{i-1}(1-t)^{N-i}>0$ it immediately follows that $F_{1}(v)=F_{2}(v)$.

Theoretical Foundations

Notation and terminology for sealed bid auctions

- There are N risk neutral bidders. Bidder n :
- has valuation v_{n}, the utility gain from winning the auction.
- receives signal $x_{n} \equiv v_{n}+\epsilon_{n}$, where $E\left[\epsilon_{n} \mid x_{n}\right]=0$.
- Denote $x \equiv\left(x_{1}, \ldots, x_{N}\right)$ and $v \equiv\left(v_{1}, \ldots, v_{N}\right)$ and $y \equiv(v, x)$.
- We often assume y is affiliated, higher realizations of one component associated with higher realizations of the others.
- This means for random variable Y with $p d f f_{Y}(y)$, where \vee (\wedge) denotes the component wise maximum (minimum):

$$
f_{Y}\left(y \vee y^{\prime}\right) f_{Y}\left(y \wedge y^{\prime}\right) \geq f_{Y}(y) f_{Y}\left(y^{\prime}\right)
$$

- Noting $x_{n} \equiv E\left[v_{n} \mid x_{n}\right]$, we say bidders have:
- private valuations if $E\left[v_{n} \mid x\right]=x_{n}$;
- common valuations if $E\left[v_{n} \mid x_{1}, \ldots, x_{N}\right]$ is strictly increasing in all $x_{m} \in\left\{x_{1}, \ldots, x_{N}\right\}$.
- pure common values if $E\left[v_{m} \mid x\right]=E\left[v_{n} \mid x\right]$ for all m and n.

Theoretical Foundations

Affiliation

- If $f_{Y}(y)>0$ and twice differentiable then affiliation is equivalent to:

$$
\partial f_{Y}(y) / \partial y_{n} \partial y_{m} \geq 0
$$

- Also if Y_{n} and Y_{m} are affiliated, then for all $y_{n} \geq y_{n}^{\prime}$ and $y_{m} \geq y_{m}^{\prime}$:

$$
\begin{aligned}
f_{Y}\left(y_{n}, y_{m}\right) f_{Y}\left(y_{n}^{\prime}, y_{m}^{\prime}\right) & \geq f_{Y}\left(y_{n}, y_{n}^{\prime}\right) f_{Y}\left(y_{m}, y_{m}^{\prime}\right) \\
\Longleftrightarrow \frac{f\left(y_{n} \mid y_{m}\right)}{f\left(y_{n} \mid y_{n}^{\prime}\right)} f\left(y_{m}\right) f\left(y_{n}^{\prime}\right) & \geq \frac{f\left(y_{m}^{\prime} \mid y_{m}\right)}{f\left(y_{m}^{\prime} \mid y_{n}^{\prime}\right)} f\left(y_{m}\right) f\left(y_{n}^{\prime}\right) \\
\Longleftrightarrow \frac{f\left(y_{n} \mid y_{m}\right)}{f\left(y_{n} \mid y_{n}^{\prime}\right)} & \geq \frac{f\left(y_{m}^{\prime} \mid y_{m}\right)}{f\left(y_{m}^{\prime} \mid y_{n}^{\prime}\right)}
\end{aligned}
$$

- In words the CDF $F\left(y \mid y_{m}\right)$ dominates $F\left(y \mid y_{n}^{\prime}\right)$ in terms of the likelihood ratio and hence one can show:
- $F\left(y \mid y_{m}\right)$ first order dominates $F\left(y \mid y_{n}^{\prime}\right)$.
- the likelihood ratio $f\left(y \mid y_{m}\right) / f\left(y \mid y_{n}^{\prime}\right)$ is increasing in y.

Theoretical Foundations

Equilibrium best responses in second price auctions with private values

- The literature focuses on perfect Bayesian equilibria in weakly undominated pure strategies (Athey and Haile, 2006).
- Let $b_{n} \equiv \beta_{n}\left(x_{n}, N\right)$ denote the equilibrium strategy of bidder n.
- In a second price auction with private values, it is a weakly dominant strategy for (each) n to bid his expected valuation, setting:

$$
\beta_{n}\left(x_{n}, N\right)=x_{n} \equiv E\left[v_{n} \mid x_{n}\right]
$$

- Note the same logic applies to n individually if $v_{n}=x_{n}$, regardless of the correlation structure of y and the other bidders' information.

Theoretical Foundations

Equilibrium best responses in first price auctions with private values

- In a private value FPSB auction denote the CDF for the maximum equilibrium bid of the $n^{\text {th }}$ bidder's rivals, conditional on the signal of n, by:

$$
G_{m_{n}}\left(b_{m} \mid x_{n}, N\right)=\operatorname{Pr}\left[\max _{n^{\prime} \in N \backslash n}\left\{b_{n^{\prime}}\right\} \leq b_{m} \mid x_{n}, N\right]
$$

- Then b_{n} solves:

$$
b_{n}=\underset{b}{\arg \max } \int_{-\infty}^{b}\left(x_{n}-b\right) G_{m_{n}}^{\prime}\left(b_{m} \mid x_{n}, N\right) d b_{m}
$$

- The first order condition is:

$$
x_{n}=b_{n}+\frac{G_{m_{n}}\left(b_{n} \mid x_{n}, N\right)}{G_{m_{n}}^{\prime}\left(b_{n} \mid x_{n}, N\right)}
$$

- Note this FOC reduces to (2) when $v_{n}=x_{n}$ and the valuations of the bidders are iid; in any case both $W\left(b_{n}\right)$ and $G_{m_{n}}\left(b_{n} \mid x_{n}, N\right)$ represent the probability of n winning the auction with bid b_{n}.

Theoretical Foundations

Equilibrium best responses in first price auctions with common values

- At a superficial level, this first order condition takes a similar form in a common value auction. Define:

$$
v_{n}\left(x_{n}, x_{n^{\prime}}, N\right)=E\left[v_{n} \mid x_{n} \text { and } \max _{n^{\prime} \in N \backslash n}\left\{b_{n^{\prime}}\right\}=\beta_{n}\left(x_{n^{\prime}}, N\right)\right]
$$

- Similar to the private values case b_{n} solves:

$$
b_{n}=\underset{b}{\arg \max } \int_{-\infty}^{b}\left[v_{n}\left(x_{n}, \beta_{n}^{-1}\left(b_{m}, N\right), N\right)-b\right] G_{m_{n} \mid b}^{\prime}\left(b_{m} \mid x_{n}, N\right) d b_{m}
$$

- The first order condition is:

$$
v_{n}\left(x_{n}, x_{n}, N\right)=b_{n}+\frac{G_{m_{n} \mid b}\left(b_{n} \mid x_{n}, N\right)}{G_{m_{n} \mid b}^{\prime}\left(b_{n} \mid x_{n}, N\right)}
$$

Identification in FPSB Auctions with Private Values

When all the bids are observed

- Assume $x_{n}=v_{n}$. From the first order condition:

$$
x_{n}=b_{n}+\frac{G_{m_{n}}\left(b_{n} \mid x_{n}, N\right)}{G_{m_{n}}^{\prime}\left(b_{n} \mid x_{n}, N\right)}
$$

- Recall from its definition that $G_{m_{n}}\left(b_{n} \mid x_{n}, N\right)$ is the probability that n wins the auction with b_{n} :

$$
G_{m_{n}}\left(b_{n} \mid x_{n}, N\right)=\operatorname{Pr}\left[\max _{n^{\prime} \in N \backslash n}\left\{b_{n^{\prime}}\right\} \leq b_{n} \mid x_{n}, N\right]
$$

- Thus if all the bids are observed then $G_{m_{n}}\left(b_{n} \mid x_{n}, N\right)$ is identified.
- Hence v_{n} is identified (for all bidders in each sampled auction).
- Therefore the probability distribution of $\left(v_{1}, \ldots, v_{N}\right)$ in this specialization is identified for any correlation structure.

Identification Fails in Common Value FPSB Auctions

When all the bids are observed

- Recall that we defined:

$$
v_{n}\left(x_{n}, x_{n^{\prime}}, N\right)=E\left[v_{n} \mid x_{n} \text { and } \max _{n^{\prime} \in N \backslash n}\left\{b_{n^{\prime}}\right\}=\beta_{n}\left(x_{n^{\prime}}, N\right)\right]
$$

and derived:

$$
v_{n}\left(x_{n}, x_{n}, N\right)=b_{n}+\frac{G_{m_{n}}\left(b_{n} \mid x_{n}, N\right)}{G_{m_{n}}^{\prime}\left(b_{n} \mid x_{n}, N\right)}
$$

- The basic problem is that conditional on N the RHS gives a number for each n, but the LHS is not a primitive of the model.
- Note that every common value model is observationally equivalent to a private value model found by setting $v_{n}=v_{n}\left(x_{n}, x_{n}^{\prime}, N\right)$.
- Thus two common value models with possibly different $v_{n}\left(x_{n}, x_{n^{\prime}}, N\right)$ but the same $v_{n}\left(x_{n}, x_{n}, N\right)$ are (also) observationally equivalent.

