ASSIGNMENT 3 (On Linear Models and Probabilty and Convergence)

There are eight equally weighted questions.

Question 1: What is $E\left[\beta_{O L S}^{(N)}-\beta_{0}\right]$ when $E\left[x_{n} \epsilon_{n}\right] \neq 0$?

Question 2: Suppose $\epsilon_{n}=\rho \epsilon_{n-1}+v_{n}$ for $n \in\{2,3, \ldots\}$, with v_{n} independently and identically distributed as a normal random variate with mean 0 and variance σ^{2}. and ϵ_{1} similarly generated from an infinite past number of draws on $v_{1}, v_{0}, v_{-1}, \ldots$:

1. What is $\operatorname{var}\left(\beta_{O L S}^{(N)}\right)$, the variance of $\beta_{O L S}^{(N)}$, in this case?
2. What is $\operatorname{var}\left(\beta_{G L S}^{(N)}\right)$ for the model

Question 3: Let $x^{(N)}=\left(x_{1}, \ldots, x_{N}\right)$. Show $\operatorname{var}\left(\beta_{I V}^{(N)}\right) \geq \operatorname{var}\left(\beta_{O L S}^{(N)}\right)$ when $E\left[\epsilon_{n} \mid z_{n}\right]=E\left[\epsilon_{n} \mid x_{n}\right]=0$ and

- $E\left[\epsilon_{n} \epsilon_{m} \mid x^{(N)}\right]=\sigma^{2}$ if $m=n$
- but $E\left[\epsilon_{n} \epsilon_{m} \mid x^{(N)}\right]=0$ if $m \neq n$.

Question 4: Turning to constrained least squares:

1. Give an expression for $E\left[\beta_{C L S}^{(N)}\right]$?
2. What is $\operatorname{var}\left(\beta_{C L S}^{(N)}\right)$ when $E\left[\beta_{C L S}^{(N)}\right]=\beta_{0}$?
3. Show $\operatorname{var}\left(\beta_{C L S}^{(N)}\right) \leq \operatorname{var}\left(\beta_{O L S}^{(N)}\right)$ when $Q \beta_{0}=c$.
4. Show the bias of $\beta_{C L S}^{(N)}$ when $Q \beta_{0}=c^{*} \neq c$.

Question 5: \quad Suppose there are N observations on $\left(y_{1 n}, y_{2 n}, x_{1 n}, x_{2 n}\right)$:

$$
\begin{aligned}
y_{1 n} & =x_{1 n} \beta_{1}+\epsilon_{1 n} \\
y_{2 n} & =x_{2 n} \beta_{2}+x_{1 n} \beta_{1}+\epsilon_{2 n}
\end{aligned}
$$

and assume $\epsilon_{n} \equiv\left(\epsilon_{1 n}, \epsilon_{2 n}\right)$ is distributed bivariate normal and independent across n, and in addition independent of $x_{n} \equiv\left(x_{1 n}, x_{2 n}\right)$, a $k \times 1$ vector, where $x_{j n}$ is $k_{j} \times 1$ for $j \in\{1,2\}$.

1. What is the mean and variance of $\beta_{2, S}^{(N)}$, the sequential estimator obtained from first regressing $y_{1 n}$ on $x_{1 n}$ to obtain the least squares estimator $\beta_{1, O L S}^{(N)}$ and then running the regression of $y_{2 n}-x_{1 n} \beta_{1, S}^{(N)}$ on $x_{2 n}$.
2. Consider the distributional properties of $\beta_{2, O L S}^{(N)}$ (obtained by regressing $y_{2 n}$ on $x_{1 n}$ and $\left.x_{2 n}\right), \beta_{2, S}^{(N)}$ (the sequential estimator defined above), and $\beta_{G L S}^{(N)}$ (the estimator with the lowest covariance matrix).

Question 6: Prove the following

1. $\mathbb{P}\left(A^{c}\right)=1-\mathbb{P}(A)$.
2. $\mathbb{P}(\phi)=0$.
3. If $A \subseteq B$ then $\mathbb{P}(B \backslash A)=\mathbb{P}(B)-\mathbb{P}(A)$.
4. If $A \subseteq B$ then $\mathbb{P}(A) \leq \mathbb{P}(B)$.
5. If $A \subseteq B$ and $\mathbb{P}(B)=0$ then $\mathbb{P}(A)=0$.
6. If $A \subseteq B$ and $\mathbb{P}(A)=1$ then $\mathbb{P}(B)=1$.
7. $\mathbb{P}\left(\bigcup_{n \in N} A_{n}\right) \leq \sum_{n \in N} \mathbb{P}\left(A_{n}\right)$.
8. If $\mathbb{P}\left(A_{n}\right)=0$ for all $n \in N$ then $\mathbb{P}\left(\bigcup_{n \in N} A_{n}\right)=0$.
9. $\mathbb{P}\left(\bigcap_{n \in N} A_{n}\right) \geq 1-\sum_{n \in N}\left[1-\mathbb{P}\left(A_{n}\right)\right]$.
10. If $\left\{A_{n}\right\}_{n \in N}$ partitions Ω then $\mathbb{P}(B)=\sum_{n \in N} \mathbb{P}\left(A_{n} \bigcap B\right)$.
11. If \mathcal{F} is a σ-algebra on Ω, show that $\phi \in \mathcal{F}$, and that \mathcal{F} is closed under under countable intersections:

$$
A_{n} \in \mathcal{F} \text { for all } n \in N \Longrightarrow \bigcap_{n \in N} A_{n} \in \mathcal{F}
$$

Question 7. Show $x_{N}(\omega) \xrightarrow{\text { a.s. }} 0$ iff $\delta_{N} \rightarrow 0$ where $\delta_{1}, \delta_{2}, \ldots$ is a sequence of real numbers and $x_{N}(\omega)$ is defined

$$
x_{N}(\omega)= \begin{cases}1 & \text { if } \omega \leq \delta_{N} \\ 0 & \text { if } \omega>\delta_{N}\end{cases}
$$

Question 8. Let $\varphi(x)$ denote a positive function, increasing on $(0, \infty)$, and symmetric about 0 , meaning $\varphi(x)=\varphi(-x)$ and suppose x has probability density function $f(x)$. Provide a graphical demonstration of Chebychev's inequality:

- Use the horizontal axis to graph x
- On the vertical axis (use the upper half plane to) plot $\varphi(x)$.
- For some $u \in(0, \infty)$, plot $1\{|x| \geq u\} \varphi(x)$ and also $1\{|x| \geq u\} \varphi(u)$.
- Use the lower half plane to plot $f(x)$.
- Now plot $\varphi(x) f(x)$ and $1\{|x| \geq u\} \varphi(u) f(x)$
- Compare the integrals under the horizontal axis to establish and illustrate the inequality.

