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Introduction
Connecting theory with data

One theme of the preceding lectures it that:
1 unless there are traces of the past in the future, drawing upon data
does not enhance prediction.

2 with only a finite amount of data the predictions of our models are
contaminated by sampling error.

3 our models are often too complex to evaluate the probability
distributions of most interest to us.

Laws of Large Numbers (LLN) and Central Limit Theorems (CLT)
partially compensate for our inability to compute the finite or exact
distributional properties of our estimates and test statistics.

These theorems are vital in:
1 providing a measure of the central tendency for our predictions.
2 indicating the precision of the predictions.
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Cumulative Distribution Functions
Definition

To explain LLN and CLT we first:

define cumulative distribution functions.
introduce a fourth mode of convergence.

Suppose X (ω) : Ω→ Rk is measurable with respect to (Ω,F ,P).
Define F (b) : Rk→ [0, 1], the (cumulative) probability distribution
function, for X (ω) as:

F (b) ≡ Pr {ω : X (ω) ≤ b} = Pr {X ≤ b}

For example if F = {Ai}Ii=1 with I < ∞, and pi ≡ Pr {ω : ω ∈ Ai},
we can express F (b) as the expected value of 1 {ω : X (ω) ≤ b}:

F (b) ≡ Pr {ω : X (ω) ≤ b} = ∑I
i=1 pi1 {ω : X (ω) ≤ b}
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Cumulative Distribution Functions
Properties of distribution functions

Notice that F (b) : R→ [0, 1], is not directly concerned with the
domain of X (ω), that is the event space and its σ-algebra (Ω,F ),
but only with its range (outcomes).

Directly from its definition F (b) is:
1 increasing.
2 limb→−∞ F (b) = 0 and limb→∞ F (b) = 1.
3 right continuous.
4 continuous at b iff F (b− ε)→ F (b) for ε > 0 as ε→ 0.

Miller (Structural Econometrics) Lecture 9 November 2021 4 / 27



Cumulative Distribution Functions
Zero mass at continuity points

Lemma
F is continuous at b if and only if Pr {ω : X (ω) = b} = 0, which is to
say there is no mass point at b.

Proof.

{ω : X (ω) ≤ b} = {ω : X (ω) < b} ∪ {ω : X (ω) = b}
⇒ Pr {ω : X (ω) ≤ b} = Pr {ω : X (ω) < b}+ Pr {ω : X (ω) = b}
⇒ Pr {ω : X (ω) = b} = Pr {ω : X (ω) ≤ b} − Pr {ω : X (ω) < b}

= F (b)− F
(
b−
)

The RHS = 0 if and only if F is continuous. Thus Fx (·) is continuous at
b if and only if b has measure zero.
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Cumulative Distribution Functions
Expectation and Lebesgue integration defined

For (Ω,F ,P) and F -measurable X (ω) : Ω→ [0,∞] define:∫
X (ω) dP (ω) = sup

{
∑I
i=1

[
inf

ω∈Ai
X (ω)

]
P (Ai )

}
where I < ∞ and:

the supremum is taken over all finite partitions of Ω into sets Ai ∈ F .∫
X (ω) dP (ω) = ∞ if the supremum does not exist.

Thus simple functions X (ω), defined on a finite partition {Ai}Ii=1 of
Ω with X (ω) = bi ∈ [0,∞] for ω ∈ Ai have expected value:

E [X (ω)] = ∑I
i=1 P (Ai ) bi

More generally for X (ω) : Ω→ [−∞,∞], define (if possible):∫
X (ω) dP (ω) =

∫
X+ (ω) dP (ω)−

∫
X− (ω) dP (ω)

where X+ (ω) = max {X (ω) , 0} and X− (ω) = −min {X (ω) , 0}.
Miller (Structural Econometrics) Lecture 9 November 2021 6 / 27



Cumulative Distribution Functions
An illustration of Lebesgue integration and measurability

Miller (Structural Econometrics) Lecture 9 November 2021 7 / 27



Weak Convergence
Convergence in distribution defined

Let F1,F2, . . . be distribution functions for X1,X2, . . .
Then XN converges weakly to X , or XN converges in distribution/law,
notated as:

XN
d→ X

if and only if:

FN (b)→ F (b) for all b where F is continuous.

For example in an assignment you are asked to show:

FN (b) =

{
0 b < 1

N

1 b ≥ 1
N

F (b) =

{
0 b < 0

1 b ≥ 0
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Weak Convergence
Comparing convergence in distribution with convergence in probability

Convergence in probability implies convergence in distribution:

Lemma
See Dhyrmes (1989 pages 161-162): "Topics in Advance Econometrics:
Probability Foundations."

If XN
p→ X, then XN

d→ X .

However the reverse is not true:

XN
d→ X does not imply XN

p→ X .

For example let X ∼ N (0, 1) and X1 = X , X2 = −X , X3 = X , . . . :
Then (trivially) XN

d→ X but XN
p9 X .

In contrast to the other three notions of convergence we discussed,
weak convergence is not directly concerned with the mapping
X (ω) : Ω→ R, but only the measure P assigned to F .
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Weak Convergence
Weak convergence to the same distribution

Lemma
Let X1,X2, . . . and Y1,Y2, . . . be two sequences of random variables with
respect to (Ω,F ,P):

If XN − YN = op (1) and XN
d→ X then YN

d→ X

Proof.
See Fuller (1976, Theorem 5.2.1. pages 193 -194): "Introduction to
Statistical Time Series".
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Asymptotic Measures of Central Tendency
Summary statement

Consider a sequence of random variables X1 (ω) ,X2 (ω) , . . . and
denote the mean of the sample by:

XN (ω) ≡ N−1 ∑N
n=1 Xn (ω)

Laws of Large Numbers (LLN) relate to the convergence of XN (ω):

Weak LLN refer to convergence in probability.
Strong LLN refer to almost sure convergence.

Central Limit Theorems (CLT) give conditions for the convergence in
distribution of N1/2XN (ω) when XN (ω) is centered, that is when:

E
[
XN (ω)

]
exists and E

[
XN (ω)

]
= 0.
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Asymptotic Measures of Central Tendency
Twin premise

Both LLN and CLT are based on assumptions that formalize the
following intuition:

1 Outliers play a limited role.
2 The dependence of current realizations on past realizations is limited
too.

Two suffi cient conditions for the theorems and results we review
below are that:

1 |Xn (ω)| ≤ M for some M < ∞ (limited variation).
2 Pr [Xn (ω) ,Xn+k (ω)] = Pr [Xn (ω)]Pr [Xn+k (ω)] for all
n ∈ {1, 2, . . .} and k ∈ {K ,K + 1,K + 2, . . .} with K < ∞
(asymptotic independence).

More general LLN and CLT amount to further relaxations of these
two conditions.
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Asymptotic Measures of Central Tendency
What can happen when variation is unbounded?

To see why some form of bounded variation is necessary consider the
following example. For all n ∈ {1, 2, . . .} let:

Xn (ω) : Ω→ {−n, n}.
Pr {Xn (ω) = n} = θ.
For all k ∈ {1, 2, . . .}:

Pr {Xn (ω) ,Xn+k (ω)} = Pr {Xn (ω)}Pr {Xn+k (ω)}

Hence E [Xn ] = n (2θ − 1) and E
[
(Xn − E [Xn ])2

]
= 4n2θ (1− θ).

For a sample of length N:

N−1
N

∑
n=1

E [Xn (ω)] = N−1
N

∑
n=1

E
[
X+n (ω)

]
−N−1

N

∑
n=1

E
[
X−n (ω)

]
= θ (N + 1) /2 − (1− θ) (N + 1) /2

Thus the limit as N → ∞ of N−1 ∑N
n=1 E [Xn (ω)] is indeterminate.
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Asymptotic Measures of Central Tendency
What can happen when there is asymptotic dependence?

An example violating the second condition is:

Xn (ω) : Ω→ {0, 1} and Pr {Xn (ω) = 1} = θ.
Pr {Xn+1 (ω) = x |Xn (ω) = x } = 1.

For future reference we note that Xn (ω) is stationary because for all
k ∈ {1, 2, . . .}:

Pr (x1, x2, . . .) = Pr (xk , xk+1, . . .)

But XN (ω) : Ω→ {0, 1} and Pr {Xn (ω) = 1} = θ.

Therefore XN (ω)
p9 E [Xn (ω)] = θ.
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Laws of Large Numbers
Weak Law of Large Numbers (Chebychev)

Theorem
Define:

SN = ∑N
n=1 Xn

for independently distributed random variables X1,X2, . . . . Suppose:

E (Xn) = µn and var (Xn) = σ2n

and
var (SN ) ≡ VN = ∑N

n=1 σ2n = o
(
N2
)
.

Then
1
N

(
SN −∑N

n=1 µn

)
p→ 0

For example if var (Xn) = σ2 then VN = Nσ2 implying VN
/
N2 → 0.
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Proof.
First note:

E
[
N−1

(
SN −∑N

n=1 µn

)]
= 0

V
[
N−1

(
SN −∑N

n=1 µn

)]
= N−2VN = N

−2o
(
N2
)
= o (1)

Hence for all ε > 0 and γ > 0, there exists N0 < ∞ such that:

N−2VN < ε2γ.

for all N ≥ N0. Chebychev’s inequality implies that for all ε > 0:

Pr {|Y | ≥ ε} ≤ ε−2E
[
Y 2
]

when the first two moments of the random variable Y exist. Combining
both inequalities:

Pr
{∣∣∣N−1 (SN −∑N

n=1 µn

)∣∣∣ ≥ ε
}
≤ ε−2N−2VN < γ

=⇒ N−1
(
SN −∑N

n=1 µn

)
p→ 0
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Laws of Large Numbers
Strong Law of Large Numbers (Kolmogorov)

Theorem
Suppose Xn (ω) is independent with finite variance σ2n. If

∑∞
n=1 σ2n

/
n2 < ∞ then XN (ω)− E

[
XN (ω)

] a.s .→ 0.

Theorem
Suppose Xn (ω) is independent and identically distributed (iid). Then a
necessary and suffi cient condition for XN (ω)

a.s .−→ µ is that E [Xn (ω)]
exists and that µ = E [Xn (ω)].

For proofs see:

Rao (1973, pages 114 -116): "Linear Statistical Inference and its
Application".
Billingsley (1979, pages 250 -251): "Probability and Measure."
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Laws of Large Numbers
Uniform LLN (Glivenko-Cantelli)

Further extending these results, define the indicator random variable:

dn (ω) =
{
1 if Xn (ω) ≤ x
0 if Xn (ω) > x

for any x ∈ R. Then:

F (x) ≡ Pr {Xn (ω) ≤ x} = E [dn (ω)]

Thus if XN (ω)− E
[
XN (ω)

] a.s .→ 0 so does FN (x)− F (x).
The Glivenko Cantelli theorem strengthens this pointwise convergence
to uniform convergence.
If the conditions for one of Kolmogorov’s LLN are satisfied:

‖FN − F‖∞ ≡ sup
x∈R

|FN (x)− F (x)|
a.s .→ 0

The discrete case follows trivially from the strong LLN using the
notation above.
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Laws of Large Numbers
Intuition for continuously distributed random variables

Consider a continuous random variable X and fix:

−∞ ≡ x0 < x1 < . . . < xr−1− < xr = ∞

spaced so that F (xi )− F (xi−1) = r−1.
Then there exists i ∈ {1, . . . , r} for all x ∈ R such that:

FN (x)− F (x) ≤ FN (xi )− F (xi−1) = FN (xi )− F (xi ) + r−1

FN (x)− F (x) ≥ FN (xi−1)− F (xi ) = FN (xi−1)− F (xi−1) + r−1

Therefore:

sup
x∈R

|FN (x)− F (x)| ≤ max
i∈{1,...,r}

|FN (xi )− F (xi )|+ r−1

Completing the proof exploits the facts that:
we can make r−1 infinitesimal.
maxi∈{1,...,r} |FN (xi )− F (xi )|

a.s .→ 0.
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Laws of Large Numbers
Martingale difference sequences

The assumption of independence can be relaxed in several ways.

Given a probability space (Ω,F ,P) equipped with an increasing
sequence of σ-algebras . . . ⊆ F−1 ⊆ F0 ⊆ F1 ⊆ . . . ⊆ F and
suppose Xn (ω) is measurable with respect to Fn.
In this case we say that {Fn}∞

n=−∞ is adapted to {Xn}∞
n=−∞.

A martingale difference sequence (MDS) is an adapted sequence on
{Xn,Fn}∞

t=−∞ with the property that E [Xn |Fn−1 ] = 0.

Theorem

Suppose {Xn,Fn}∞
n=0 is an MDS with variances

{
σ2n
}∞
n=0 and {an, }

∞
n=0 is

a sequence of constants with limn→∞ an = ∞. Then SN /aN
a.s .→ 0 if

∑∞
n=1 σ2n

/
a2n < ∞.
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Laws of Large Numbers
The ergodic theorem

X1,X2, . . . is stationary if and only if for all B ∈ B∞ and k = 1, 2, . . .:

Pr ({ω : X1 (ω) ,X2 (ω) , . . .} ∈ B)
= Pr ({ω : Xk+1 (ω) ,Xk+2 (ω) , . . .} ∈ B)

A stationary sequence X1,X2, . . . is ergodic if for any two bounded
mappings f : Rk → R and g : Rk → R:

lim
N→∞

E [f (X1, . . . ,Xk ) g (X1+N , . . . ,Xl+N )]

= E [f (X1, . . . ,Xk )]E [g (X1+N , . . . ,Xl+N )]

Theorem
If {Xn} is stationary and ergodic, and the expected value of Xn exists with
E (Xn) < ∞, then:

SN /N
a.s .→ E (Xn)
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Central Limit Theorems
The Lindeberg-Levy CLT

Theorem
Let Xn be a sequence of independent and identically distributed random
variables with zero men variance σ2. Then:

N−1/2SN = N
1/2
(
1
N ∑N

n=1 Xn

)
d→ N

(
0, σ2

)
Note when Xn is normally distributed N−1/2SN ∼ N

(
0, σ2

)
for all N

not just in the limit as N → ∞.
Again, there are several generalizations to this result:

It can be extended to vectors.
The assumption that Xn is identically distributed can be relaxed.
We can also relax the independence assumption.
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Central Limit Theorems
Intuition for CLT when all the moments exist (and fully characterize the distribution)

Noting N−1/2SN has mean 0 and variance σ2, consider the fourth
moment:

E
(
N−2S4N

)
= N−2

N

∑
r=1

N

∑
s=1

N

∑
t=1

N

∑
u=1

E (XrXsXtXu)

Since Xn are independently distributed, E (XrXsXtXu) 6= 0 only when:

r = s = t = u, r = s 6= t = u, r = t 6= s = u, r = u 6= t = s

=⇒ E
[
N−2S4N

]
= N−2

{
NE
[
X 4n
]
+ 3N (N − 1) σ4

}
= o (N) + 3 (N − 1)N−1σ4

Thus the value of the fourth moment only depends on σ2.
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Central Limit Theorems
Continuing the intuition for a simple CLT

A similar argument applies to all the even moments.

All the odd moments are asymptotically negligible.

Consequently, given a value for σ2, the asymptotic distribution of
N−1/2SN does not depend on the distribution of Xn.

In particular, when Xn is standard normal N
(
0, σ2

)
, so is

N−1/2SN ∼ N
(
0, σ2

)
for all N.
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Central Limit Theorems
A general CLT for independent random variables (the Lindeberg-Feller theorem)

Given independent random variables {Xn}∞
n=1 with means {µn}

∞
n=1

define the triangular array:

XnN ≡ (Xn − µn) /sN where s2N = ∑N
n=1 E

[
(Xn − µn)

2
]

Let SN = ∑N
n=1 XnN . By independence (and construction):

E [SN ] = 0 and E
[
S2N
]
= ∑N

n=1

∫
X 2nNdP = 1

Lindeberg proved SN
d→ N (0, 1) if for all ε > 0 :

lim
N→∞

{
∑N
n=1

∫
|XnN |≥ε

X 2nNdP
}
= 0 (1)

Conversely Feller proved (1) holds if SN
d→ N (0, 1) and for all ε > 0:

lim
N→∞

[
max
1≤n≤N

Pr {|XnN | > ε}
]
= 0
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Central Limit Theorems
Liaponov’s suffi cient condition

A stronger condition than (1) is that for some δ > 0:

lim
N→∞

∑N
n=1 E

[
|XnN |2+δ

]
= 0 (2)

To show (2) is stronger than (1), note that for any ε > 0:

E
[
|XnN |2+δ

]
≥

∫
|XnN |≥ε

|XnN |2+δ dP

≥
∫
|XnN |≥ε

X 2nN εδdP

= εδ
∫
|XnN |≥ε

X 2nNdP

=⇒ lim
N→∞

∑N
n=1 E

[
|XnN |2+δ

]
≥ εδ lim

N→∞
∑N
n=1

∫
|XnN |≥ε

X 2nNdP

Lindeberg’s condition, (1), now follows from (2) because εδ > 0 and
does not depend on N.
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Central Limit Theorems
A CLT for dependent processes

Theorem
Let {XnN ,FnN} be a martingale difference array with finite unconditional
variances

{
σ2nN

}
, and ∑N

n=1 σ2nN = 1. Then:

SN ≡∑N
n=1 XnN

d→ N (0, 1)

if:

∑N
n=1 X

2
nN

p→ 1 and max1≤n≤N |XnN |
p→ 0.

Proof.
See Davidson (1994, Theorem 24.3, pages 383 - 384): "Stochastic Limit
Theory".
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