Probability and Convergence

Robert A. Miller

Structural Econometrics

November 2024

Probability Measure Collections of sets and sigma algebras

- Let Ω denote a collection of events and $\phi \subseteq \Omega$ the empty set.
- Let $N \equiv \{1, 2, \ldots\}$ denote the counting numbers.
- Define $A^c \subseteq \Omega$, the *complement* of $A \subseteq \Omega$ such that:

•
$$A \cap A^c = \phi$$
 and $A \cup A^c = \Omega$

• Let $B \setminus A$ denote the set difference of subtracting A from B:

• $B \setminus A \equiv (A \cap B)^c \cap B$

• A countable collection of events $\{A_n\}_{n \in \mathbb{N}}$ partitions Ω iff:

•
$$A_n \cap A_{n'} = \phi$$
 for all $A_n \in \Omega$ and $A_{n'} \in \Omega$

•
$$\bigcup_{n\in N} A_n = \Omega$$

- A σ-algebra on Ω, denoted by F, is a collection of subsets containing Ω, and closed under:
 - complements: $A \in \mathcal{F} \Longrightarrow A^c \in \mathcal{F}$
 - countable unions: $A_n \in \mathcal{F}$ for all $n \in N \Longrightarrow \bigcup_{n \in N} A_n \in \mathcal{F}$

- - $\mathbb{P}(A) \ge 0$ for every event $A \subseteq \Omega$. • $\mathbb{P}(\Omega) = 1$ • If $A_m \cap A_n = \phi$ for all $n \ne m$ then $\mathbb{P}(\bigcup_{n \in N} A_n) = \sum_{n \in N} \mathbb{P}(A_n)$.
- The first two axioms essentially bound how events are weighed.
- In this way we avoid the conundrum of adding infinities to each other or subtracting infinity from infinity.
- Aside from that, the choices of "0" and "1" in the first two axioms is for convenience.
- The third axiom, known as *countable additivity*, helps define sums.
- Note the interval [0, 1] has length one but is the union of an uncountable of points $r \in [0, 1]$, each point having length zero.

Probability Measure Conditional probability and independence

- Given (Ω, \mathcal{F}, P) suppose $B \in \mathcal{F}$ and $P(B) \neq 0$.
- Then for all $A \in \mathcal{F}$ we define the probability of A conditional on B as:

$$P(A|B) \equiv P(A \cap B) / P(B)$$

• More generally, setting $B = \bigcap_{n \in N} A_n$ we obtain:

$$P\left(\bigcap_{n\in\mathbb{N}}A_{n}\right)\equiv P\left(A_{1}\right)\prod_{n=2}^{\mathbb{N}}P\left(A_{n}\left|\bigcap_{k=1}^{n-1}A_{k}\right.\right)$$

• We say A and B are independent events iff:

 $P(A \cap B) = P(A) P(B)$ or equivalently P(A|B) = P(A)

More generally:

$$P\left(\bigcap_{n\in\mathbb{N}}A_n\right)=\prod_{n\in\mathbb{N}}P\left(A_n\right)$$

Probability Measure

Random variables

- Denote the elements of Ω by $\omega \in \Omega$.
- Note, depending on how \mathcal{F} is defined, perhaps $\omega \notin \mathcal{F}$.
- Real valued, measurable functions of Ω are called random variables.
- That is $x(\omega): \Omega \to \mathbb{R}$, and for all Borel sets $B \subseteq \mathcal{B}$:

 $\{\omega: x(\omega) \in B\} \in \mathcal{F}$

• We write the conditional expectation of $x(\omega)$ as:

$$E(x|B) = \frac{1}{P(B)} \int 1\{\omega : x(\omega) \in B\} x(\omega) dP$$

• If $x(\omega) : \Omega \to \mathbb{R}^{\infty}$ denoted by $x(\omega) = (x_1(\omega), x_2(\omega), ...)$ is measurable with respect to \mathcal{B}_{∞} , then:

$$P(x(\omega)) = P\left(\bigcap_{n=1}^{\infty} x_n(\omega)\right)$$

= $P(x_1(\omega)) \prod_{n=2}^{\infty} P(x_n(\omega) \mid x_1(\omega), ..., x_{n-1}(\omega))$

Independence and identically distributed random variables

• We say $x(\omega)$ is independent iff:

$$P(x(\omega)) = \prod_{n=1}^{\infty} P(x_n(\omega))$$

• Supposing $x(\omega)$ is independent, then it is identically distributed as well if:

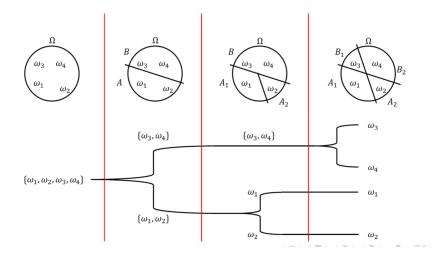
$$P(x_n(\omega)) = P(x_m(\omega))$$

for all n, m, ω .

- For each N = 1, 2, ..., let $(\Omega, \mathcal{F}_{N,P})$ denote a probability space, where we now interpret:
 - $\omega \in \Omega$: a world history, or an ordering of the population, from beginning to end.
 - *N* : sample size showing how far history (many individuals) has progressed (have been interviewed).
 - \mathcal{F}_N : set of all possible (partial) histories showing the distinguishing features of ω that can be observed from sample of size N. By construction $\mathcal{F}_N \subseteq \mathcal{F}_{N+1} \subseteq \dots$
 - *P* : probability measure over possible (world) histories.
 - $\theta \in \Theta$: unknown parameters of interest defining *P*.
 - $h_N(\omega; \theta) : \Omega \times \Theta \to \mathbb{R}^q$: a function of the sample, measurable with respect to $(\Omega, \mathcal{F}_N, P)$.

Statistical Inference

Illustrating histories to show how information sets evolve



Statistical Inference

Motivation

Consider a statistic:

$$\theta\left(x^{(N)}\right) \equiv \theta_N$$

- On basis of this statistic, suppose we want to estimate θ₀, the parameters defining the data generating process.
- Ideally this involves deriving the probability $\theta_N \leq \theta$ when θ_0 generated the data:

$$\Pr\left\{\theta_N \le \theta; \theta_0\right\} \qquad \forall \theta$$

- Continuing this wish list, we might hope to form a θ_N such that $\Pr{\{\theta_N \leq \theta; \theta_0\}}$ is a step function with a single step at θ_0 .
- We often focus on the first two moments:

$$E\left[\theta_{N};\theta_{0}\right]$$
 and $\operatorname{var}\left(\theta_{N};\theta_{0}\right)$

• This approach is usually intractable for nonlinear models.

Statistical Inference

Three questions

- Rather than ask what is the probability distribution of θ_N given θ_0 we ask some less demanding, and less revealing, questions about the limiting properties of θ_N as $N \to \infty$.
- First question: For some definition of "->", is there a sense in which:

$$\theta_N$$
" \rightarrow " θ_0 ?

• Second question: Is there a sense in which how quickly θ_N " \rightarrow " θ_0 ? We might ask for what values of $\alpha > 0$ does:

$$N^{\alpha} \left(\theta_N - \theta_0 \right)$$
 " \rightarrow " 0?

• Third question: For the "biggest" α^* almost satisfying $\mu_N^{\alpha} \equiv N^{\alpha} (\theta_N - \theta_0) \xrightarrow{"} 0$, let $G_N (\mu_N^{\alpha^*}; \theta_0)$ denote the probability distribution function of $\mu_N^{\alpha^*}$ given θ_0 and conditional on $\{x_n\}_{n=1}^N$. Is there a probability distribution $G (\mu_N^{\alpha^*}; \theta_0)$ such that:

$$G_N\left(\mu_N^{\alpha^*};\theta_0\right) \quad "\to " \quad G\left(\mu_N^{\alpha^*};\theta_0\right)?$$

• For (Ω, \mathcal{F}, P) , a probability space induced by θ_0 , and $\omega \in \Omega$, a history, define an exception set as:

$$A_{Nr} = \left\{ \omega : \left| \theta_{N} \left(\omega \right) - \theta_{0} \right| > \frac{1}{r} \right\}$$

- Thus A_{Nr} depicts for which histories it is true that our estimator $\theta_N(\omega)$ differs from θ by more than than $\frac{1}{r}$.
- Note that $A_{Nr} \subseteq A_{N,r+1} \subseteq \cdots$
- Convergence is based on the notion that A_{Nr} shrinks as N increases.

- Convergence in probability means the probability of an exception set occurring converges to zero.
- We denote convergence in probability by:

$$x_N \xrightarrow{p} x$$
 (or plim $x_N = x$)

• Formally $x_N \xrightarrow{p} x$ if and only if for all $r \in \{1, 2, \ldots\}$:

$$0 = \lim_{N \to \infty} \Pr(A_{Nr})$$

=
$$\lim_{N \to \infty} \Pr\left\{\omega : |x_N(\omega) - x(\omega)| > \frac{1}{r}\right\} \quad \forall r = 1, 2, \dots$$

• That is for each $(r, \delta) \in \{1, 2, ...\} \times \mathbb{R}$ there exists some N^* such that for all $N > N^*$:

$$\Pr\left\{\omega:\left|x_{N}\left(\omega\right)-x\left(\omega\right)\right|>\frac{1}{r}\right\}\equiv\Pr\left(A_{Nr}\right)<\delta$$

Convergence An example of convergence in probability

Let:

• Let $\delta_1, \delta_2, \ldots$ be a sequence of real numbers and:

$$x_{N}(\omega) \equiv \begin{cases} 1 & \text{if } \omega \leq \delta_{N} \\ 0 & \text{if } \omega > \delta_{N} \end{cases}$$

Then

$$x_N(\omega) \xrightarrow{p} 0 \quad \text{iff } \delta_N \to 0.$$

Convergence

Extending convergence in probability to vectors of random variables

Now suppose x_N (ω) and x (ω) are K dimensional vector of random variables expressed as:

$$\begin{aligned} x_{N}(\omega) &\equiv (x_{1N}(\omega), \dots, x_{KN}(\omega)) \\ x(\omega) &\equiv (x_{1}(\omega), \dots, x_{K}(\omega)) \end{aligned}$$

• We say $x_N(\omega) \xrightarrow{p} x(\omega)$ iff:

$$\lim_{N \to \infty} \Pr\left\{ \omega : \|x_N(\omega) - x(\omega)\| > \frac{1}{r} \right\}$$

$$\equiv \lim_{N \to \infty} \Pr\left\{ \omega : \sum_{k=1}^{K} [x_{kN}(\omega) - x_k(\omega)]^2 > r^{-2} \right\}$$

$$= 0$$

• Note that $x_N(\omega) \xrightarrow{p} x(\omega)$ iff $x_{kN}(\omega) \xrightarrow{p} x_k(\omega)$ for all k.

• Consider subsets $A_N \subset \Omega$ for $N = 1, 2, \dots$ and define:

$$\limsup_{N} A_{N} \equiv \bigcap_{N=1}^{\infty} \bigcup_{K=N}^{\infty} A_{K} \text{ and } \liminf_{N} A_{N} \equiv \bigcup_{N=1}^{\infty} \bigcap_{K=N}^{\infty} A_{K}$$

This leads us to focus on:

$$A_{r}^{*} \equiv \limsup_{N} A_{Nr} = \bigcap_{N=1}^{\infty} \bigcup_{k=N}^{\infty} \left\{ \omega : |x_{k}(\omega) - x(\omega)| > \frac{1}{r} \right\}$$

• We say $x_N \xrightarrow{a.s.} x$ (or x_N converges to x with probability 1) if and only if:

$$0 = \Pr\left(\bigcup_{r=1}^{\infty} A_{r}^{*}\right) = \Pr\left(\bigcup_{r=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{k=N}^{\infty} \left\{\omega : \left|x_{k}\left(\omega\right) - x\left(\omega\right)\right| > \frac{1}{r}\right\}\right)$$

• We say x_N converges to x in L_p for $p = \{1, 2, ...\}$ or $x_N \xrightarrow{L_p} x$ iff:

$$\lim_{N\to\infty} \mathrm{E}\left[|x_N-x|^p\right] = 0$$

 If p = 2 we say "convergence in quadratic mean" or "convergence in mean square".

How are these Convergence Concepts Related? Chebychev's inequality

- Chebychev's inequality is a useful tool for understanding how the relationship between these convergence concepts.
- It states: If $\varphi : \mathbb{R} \to \mathbb{R}$ is positive, increasing on $(0, \infty)$, symmetric $(\varphi(u) = \varphi(-u))$, and x is a random variable on (Ω, \mathcal{F}, P) , then for all u > 0:

 $\varphi(u) P(|x| \ge u) \le E(\varphi(x))$

• To prove Chebychev's inequality, note that:

$$E(\varphi(x)) = \int_{\Omega} \varphi(x(\omega)) dP$$

$$\geq \int_{\Omega} \mathbf{1}_{\{|x| \ge u\}}(\omega) \varphi(x(\omega)) dP$$

$$\geq \int_{\Omega} \mathbf{1}_{\{|x| \ge u\}}(\omega) \varphi(u) dP$$

$$= \varphi(u) P(|x| \ge u)$$

Two applications of Chebychev's inequality

To illustrate Chebychev's inequality set:

$$\varphi\left(x
ight)=x^{2}$$
 and $u=\sigma$

to obtain

$$\Pr\left(|x| \ge \sigma\right) \le \frac{\mathrm{E}\left(x^2\right)}{\sigma^2}$$

Lemma

If
$$x_N \xrightarrow{L_p} x$$
 then $x_N \xrightarrow{p} x$.

Proof.

For p > 0 set:

$$arphi\left(u
ight)=\left|u
ight|^{p}$$
 and $u=rac{1}{r}$

Since $\varphi(u)$ is symmetric and increasing, we can apply Chebychev's inequality to obtain:

$$\Pr\left(|x_N - x| \ge \frac{1}{r}\right) \le \mathbb{E}\left[|x_N - x|^p\right] r^p$$

By hypothesis:

$$\lim_{N\to\infty} \mathrm{E}\left[|x_N-x|^p\right] = 0$$

so for any p > 0 and $r \in \{1, 2, \ldots\}$:

$$\lim_{N} \Pr\left(|x_N - x| \ge \frac{1}{r}\right) = 0$$

Lemma

$$x_N \xrightarrow{a.s.} x$$
 does not imply $x_N \xrightarrow{L_p} x$.

Proof.

Let $(\Omega, \mathcal{F}, P) \equiv \{[0, 1], \mathcal{B}[0, 1], \mathcal{L}\}$ and define:

$$x_{N}\left(\omega
ight)=\left\{ egin{array}{l} 2^{N} ext{ if } \omega\in\left(0,1/N
ight) \ 0 ext{ otherwise} \end{array}
ight.$$

Then
$$\Pr\left(\bigcup_{r=1}^{\infty} A_{r}^{*}\right) = \Pr\left(\bigcup_{r=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{k=N}^{\infty} \{\omega : x_{k}(\omega) > 1/r\}\right)$$

 $\leq \Pr\left(\bigcap_{N=1}^{\infty} \bigcup_{k=N}^{\infty} \{\omega : x_{k}(\omega) \neq 0\}\right)$
 $= \Pr\left[\bigcap_{N=1}^{\infty} \bigcup_{k=N}^{\infty} \{\omega \in (0, 1/N)\}\right]$
 $= \Pr\left[\bigcap_{N=1}^{\infty} \{\omega \in (0, 1/N)\}\right]$
 $= 0$

Therefore $x_N \stackrel{a.s}{\to} 0$. But $E[|x_N|^p] = (2^N/N)^p \to \infty$ so $x_N \stackrel{L_p}{\to} 0$.

Almost sure convergence implies convergence in probability

Theorem

(Theorem 18.3 J. Davidson, Stochastic limit theory, p. 283): $x_N \xrightarrow{a.s.} x$ if and only if for all $\varepsilon > 0$:

$$\lim_{n \to \infty} \Pr\left[\sup_{N \ge m} |x_N - x| \le \varepsilon\right] = 1$$

Lemma

$$x_N \xrightarrow{a.s} x \implies x_N \xrightarrow{p} x$$

Proof of lemma

Proof.

$$\begin{split} \sup_{N \ge m} |x_N - x| &\ge |x_m - x| \\ \Rightarrow & \Pr\left[\sup_{N \ge m} |x_N - x| \le \varepsilon\right] \le \Pr\left[|x_m - x| \le \varepsilon\right] \\ \Rightarrow & \lim_{m \to \infty} \Pr\left[\sup_{N \ge m} |x_N - x| \le \varepsilon\right] = 1 \le \lim_{m \to \infty} \Pr\left[|x_m - x| \le \varepsilon\right] \\ \Rightarrow & \lim_{m \to \infty} \Pr\left[|x_m - x| \le \varepsilon\right] = 1 \end{split}$$

But:

$$\lim_{m \to \infty} \Pr\left[|x_m - x| \le \varepsilon\right] = 1$$

$$\Rightarrow \quad \lim_{m \to \infty} \Pr\left[|x_m - x| > \varepsilon\right] = 0.$$

Lemma

$$x_N \xrightarrow{L_p} x$$
 does not imply $x_N \xrightarrow{a.s.} x$

Proof: Let $(\Omega, \mathcal{F}, P) \equiv \{[0, 1], \mathcal{B}[0, 1], \mathcal{L}\}$ and define $x_N(\omega)$ as:

$$\begin{split} & x_1 \left(\omega \right) \;\; = \;\; \mathbf{1}_{[0,1/2]} \left(\omega \right) \text{, } \; x_2 \left(\omega \right) = \mathbf{1}_{[1/2,1]} \left(\omega \right) \\ & x_3 \left(\omega \right) \;\; = \;\; \mathbf{1}_{[0,1/3]} \left(\omega \right) \text{, } \; x_4 \left(\omega \right) = \mathbf{1}_{[1/3,2/3]} \left(\omega \right) \text{, } \; x_5 \left(\omega \right) = \mathbf{1}_{[2/3,1]} \left(\omega \right) \text{, } \; \text{.} \\ & \text{Relative to } x \left(\omega \right) = \mathbf{0} \text{, for all } p \text{:} \end{split}$$

$$E(|x_N|^p) = \int_{\Omega} 1_{A_N(\omega)} dP = \frac{1}{k+1} \text{ if } \frac{k(k+1)}{2} \le N \le \frac{(k+1)(k+2)}{2}$$

Therefore $x_N \xrightarrow{L_p} 0$ for all p because $(k+1)^{-1} \to 0$ as $N \to \infty$. But $\forall \omega \in \Omega$ and $N \in \{1, 2, ...\}$ there exists k such that $x_k(\omega) = 1$:

$$\bigcup_{r=1}^{\infty} A_r^* = \bigcup_{r=1}^{\infty} \lim_{N \to \infty} \bigcup_{k=N}^{\infty} \left\{ \omega : x_k(\omega) > \frac{1}{r} \right\} = \bigcup_{r=1}^{\infty} \left\{ \omega : \omega \in \Omega \right\} = \Omega$$

Lemma

Suppose

$$|x_{N}(\omega)| \leq y(\omega) \in L^{p}$$

If
$$x_N(\omega) \xrightarrow{p} 0$$
, then $x_N(\omega) \xrightarrow{L^p} 0$.

Proof.

See Chung (1974, page 67): A Course in Probability Theory

- Let $\{y_N\}_{N=1}^{\infty}$ denote a sequence of real numbers, and $\{g_N\}_{N=1}^{\infty}$ a sequence of positive real numbers.
- We say y_N is at most of order g_N , and write $y_N = O(g_N)$ if there exists a real number M such that for all N:

$$\frac{|y_N|}{g_N} \le M$$

• We say y_N is of smaller order than g_N and write $y_N = o(g_N)$ if and only if:

$$\frac{y_N}{g_N} \to 0$$

That is for any $\varepsilon > 0$ there exists an N_{ε} such that $\frac{|y_N|}{g_N} < \varepsilon$ for all $N \in \{N_{\varepsilon} + 1, N_{\varepsilon} + 2, \ldots\}$.

Order of Magnitude Order in probability

- Now let x_N be a random variable with respect to (Ω, \mathcal{F}, P) .
- We say *x_N* is at most of order *y_N* writing:

$$x_{N}=O_{p}\left(g_{N}
ight)$$

if there exists a positive number M_r for all $r \in \{1, 2, ...\}$ such that for all N:

$$\Pr\left[\frac{|x_N|}{g_N} \ge M_r\right] \le \frac{1}{r}$$

• We say that x_N is of smaller order than g_N in probability, writing:

$$x_{N}=o_{p}\left(g_{N}
ight)$$

if:

$$\frac{x_N}{g_N} \xrightarrow{p} 0.$$

Order in Magnitude

Second moments imply being bounded in probability

Lemma

Let x_1, x_2, \ldots be a sequence of random variables with respect to (Ω, \mathcal{F}, P) , and g_1, g_2, \ldots a sequence of positive real numbers such that

$$E\left(x_{N}^{2}
ight)=O\left(g_{N}^{2}
ight)$$

Then

$$x_{N}=O_{p}\left(g_{N}
ight)$$

• For example suppose $x_N \sim \mathcal{N}\left(0, \sigma^2\right)$ that for all N. Then:

$$E\left(x_{N}^{2}\right)=\sigma^{2}=O\left(1\right)$$

and by the lemma $x_N = O_p(1)$.

Order in Magnitude

Proving the connection

Proof.

By the premise there exists $M < \infty$, such that:

$$\mathrm{E}\left[x_{N}^{2}/g_{N}^{2}\right] \leq M$$

Also by Chebychev's inequality, for all $M_r > 0$:

$$\Pr\left[\frac{|x_N|}{g_N} \ge M_r\right] \le \frac{\operatorname{E}\left[x_N^2 / g_N^2\right]}{M_r^2}$$

For any r choose M_r to satisfy the inequality:

$$M_r > (Mr)^{1/2} \Rightarrow M_r^2 > Mr \Rightarrow \frac{M}{M_r^2} \le \frac{1}{r}$$

Then
$$\Pr\left[\frac{|x_N|}{g_N} \ge M_r\right] \le \frac{\mathbb{E}\left[x_N^2/g_N^2\right]}{M_r^2} \le \frac{M}{M_r^2} \le \frac{1}{r}$$
.

Miller (Structural Econometrics)