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Introduction
Some intuition

Let H0 denote a null hypothesis.
Let HA denote the alternative hypothesis, the complement of H0.
Evidence we collect against the null might lead us to reject H0.
Lacking evidence to the contrary, we might continue to believe H0 is
true, or fail to reject H0.
We can commit two types of mistakes:

1 A Type 1 error occurs (a false positive) when we falsely reject H0. The
size of the test, or the probability of landing in the critical region, gives
the probability of committing a Type 1 error.

2 A Type 2 error occurs (a false negative) when we do not reject a false
H0. The power of the test is the probability of rejecting H0 when HA is
true and that probability is well defined.

Given a sample, we might minimize the expected loss from making
either of these two mistakes, and balance it against the benefits of
collecting more information.
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Introduction
A formalism

The notation used in estimation readily adapts to hypothesis testing:

Ω is a population, or the set of all possible histories/orderings.
ω∗ ∈ Ω is one ordering of the population, or a specific history.
FN is a σ−algebra induced on Ω with a sample of N = 1, 2, . . .

Given this framework we might:

construct a test statistic, TN (ω), an FN−measurable random variable.
fix a size, α, the probability of a Type 1 error.
choose a critical region, cα, for rejecting H0 that minimizes the
probability of a Type 2 error.
reject H0 iff tN ≡ TN (ω∗) ∈ cα.

The size of the test is set by convention: the notion is that only under
exceptional circumstances should the null hypothesis be rejected.

For this reason we tend to include (exclude) significant (insignificant)
variables from our final regressions.
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Introduction
Simple versus composite hypotheses

When Hi fully specifies a probability distribution, we say Hi is simple.

In this case Hi induces a probability space (Ω,FN ,Pi ).
More generally suppose Θi denotes class of probability distributions
for i = {0,A} containing elements θi ∈ Θi , and define:

H0 : θ ∈ Θ0
HA : θ ∈ ΘA

When Θi contains more than one element we say Hi is composite.

For example if Xn (ω) is iid normal with mean µ and variance σ2:

Θ0 = {(µ, σ) : µ = 2, σ = 2} and ΘA = {(µ, σ) : µ = 2, σ = 5} pits
two simple hypotheses against each other.
Θ0 = {(µ, σ) : µ = 2, σ = 2} and ΘA = {(µ, σ) : µ = 0, σ > 0} pits
a simple hypothesis H0 against a composite hypothesis HA.
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Testing Simple Hypotheses
A framework

Suppose Hi is simple for i = {0,A}.
Let Pi denote the probability distribution characterizing Hi .

We can now define:

the size of the test by P0 {tN ∈ cα} = α . (1)

the power of the test by PA {tN ∈ cα} . (2)

Choose cα to maximize (2) subject to (1).

That is for a given tolerance of rejecting the null hypothesis (such as
incorrectly diagnosing a healthy patient as sick), we maximize the
probability of rejecting a false null hypothesis (correctly diagnosing a
sick patient).
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Testing Simple Hypotheses
Neyman-Pearson Lemma

To characterize the best test for two simple hypotheses, suppose:
X (ω) : Ω→ R is the random variable generating the sample.
fi (·) denotes the pdf derived from Pi of observing x given Hi .
Λ (x) ≡ fA (x)

/
f0 (x) is the likelihood ratio for x of HA relative to H0.

xN is the sample outcome and ΛN ≡ fA (xN )
/
f0 (xN ) .

Lemma (Neyman-Pearson)

The best (most powerful) test of H0 against HA of size α sets
cα ≡ [Λα,∞] for Λα ∈ R+ solving:

P0 {Λ (x) ≥ Λα} = α

The lemma gives a straightforward procedure for conducting the test:
Form FΛ (·), the cumulative distribution function of Λ under H0.
Solve FΛ (Λα) = α to obtain Λα.
Reject H0 iff tN ≡ ΛN ≥ Λα.
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Testing Simple Hypotheses
Proof of Neyman-Pearson Lemma (one of two)

Letting c ′α denote any other critical region of size α aside from cα:

α =
∫
cα

f0 (x) dx =
∫
c ′α
f0 (x) dx

=⇒
∫
cα−c ′α

f0 (x) dx =
∫
c ′α−cα

f0 (x) dx

=⇒
∫
cα−c ′α

Λαf0 (x) dx =
∫
c ′α−cα

Λαf0 (x) dx

But:

Λ (x) ∈ cα − c ′α =⇒ Λ (x) ∈ cα =⇒ fA (x) ≥ Λαf0 (x)

Λ (x) ∈ c ′α − cα =⇒ Λ (x) ∈ ccomplementα =⇒ fA (x) < Λαf0 (x)
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Testing Simple Hypotheses
Proof of Neyman-Pearson Lemma (two of two)

Integrating over the regions x ∈ cα − c ′α and then x ∈ c ′α − cα:∫
cα−c ′α

fA (x) dx ≥
∫
cα−c ′α

Λαf0 (x) dx

=
∫
c ′α−cα

Λαf0 (x) dx ≥
∫
c ′α−cα

fA (x) dx

with strict inequality if the regions are different.

Adding the region x ∈ cα ∩ c ′α we obtain:∫
cα

fA (x) dx =
∫
cα∩c ′α

fA (x) dx +
∫
cα−c ′α

fA (x) dx

≥
∫
cα∩c ′α

fA (x) dx +
∫
c ′α−cα

fA (x) dx =
∫
c ′α
fA (x) dx
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Testing Composite Hypotheses
Uniformly most powerful tests

When HA is a composite hypothesis, the critical region typically
depends on which value of θ ∈ ΘA holds.
In the example of the normal distribution described above, the
solution to maximizing (2) subject to (1) depends on whether σ = 1
or σ = 3 under HA.
A uniformly most powerful test (UMP) exists when cα does not vary
with θ ∈ ΘA.
Roughly speaking, a UMP for composite hypotheses exists, when all
three of the following conditions hold:

1 only one parameter to be estimated.
2 the likelihood ratio is monotone in that parameter.
3 the test is one sided.

When a UMP exists, following the Neyman-Pearson approach:
form the likelihood ratio for any of the alternatives in HA.
compute its cumulative distribution function.
match the probability of cα to the size designated by α.
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Asymptotic Properties of Test Statistics
Consistent tests

We encountered computation problems in deriving the exact (finite
sample) distribution of estimators for nonlinear models.

Aside from a few special cases, deriving the exact distribution of the
likelihood ratio also demands a numerical approach.

This has led applied researchers to focus on the large sample or
asymptotic properties of test statistics.

A desirable asymptotic property is that for any given size, the
probability of a Type 2 error should vanish as the sample increases.

Reverting to the notation let H0 : θ ∈ Θ0 and HA : θ ∈ ΘA: we say
TN (ω) is consistent when there exists some θ0 ∈ Θ0 such that as
N → ∞ for all θ ∈ ΘA:

P0 {tN ∈ cα} = α (holding constant the probabilty of a false positive)
PA {tN ∈ cα} → 1 (the probability of a false negative goes to zero)
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Asymptotic Properties of Test Statistics
Testing a normally distributed estimator of the parameters against a null vector

For example, suppose
√
N (θN − µ) ∼ N (0,Σ), where:

µ ∈ Rs

Σ is a known s × s positive definite matrix.

Consider the simple null hypothesis H0 and composite alternative HA
respectively defined by:

H0 : µ = θ0

HA : µ 6= θ0

Define the test statistic by:

tN = N (θN − θ0)
′ Σ−1 (θN − θ0)

tN ∼ χ2df =s under H0 but under HA the distribution is degenerate at
infinity.
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Asymptotic Properties of Test Statistics
A consistent test in this multivariate normal example

This last point follows from:

tN = N (θN − θ0)
′ Σ−1 (θN − θ0)

= N (θN − µ)′ Σ−1 (θN − µ) +N (µ− θ0)
′ Σ−1 (µ− θ0)

and that N (µ− θ0)
′ Σ−1 (µ− θ0)→ ∞ for all µ 6= θ0.

Putting some (any) probability mass in the right tail of χ2df =s for any
size α produces a consistent test.
For example choose positive constants cα and cα satisfying:

P0 {tN ∈ [0, cα]} = P0 {tN ∈ [cα,∞]} =
α

2
⇒ P {tN ∈ cα |µ 6= θ0 } > P {tN ∈ [cα,∞] |µ 6= θ0 } → 1

Following this line of enquiry would lead us to consider asymptotically
most powerful unbiased tests, in which we consider local alternative
hypotheses such as HA : µ = θ0 +N−1/2 δ for fixed δ ∈ Rs .
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Likelihood Ratio Test
The likelihood ratio test

When testing two simple hypotheses we showed that the likelihood
ratio produces the best test, maximizing power subject to a given size.
For consistent tests, pitting H0 against HA, is no different from
testing H0 against the composite H0 ∪HA.
Accordingly suppose:

HA : θ ∈ Θ ⊂ Rsinterior
H0 : θ ∈ Θ0 ⊂ R

s−q
interior for some q ∈ {1, 2, . . . , s}

LN (θ) denotes the likelihood.

θ
(N )
i denotes the MLE for i = {0,A} under Hi .

Define the likelihood ratio statistic (LR) as:

tN ≡ 2
{
ln LN

(
θ
(N )
A

)
− ln LN

(
θ
(N )
0

)}
Theorem (Wilk’s theorem)

tN
d→ χ2q .
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Testing in the GMM Framework
A framework for testing GMM estimators

(Ω,F ,Pi ) is {Xn} stationary and ergodic for i ∈ {0,A}, and:
θ(1) ∈ Rp1 .
θ(2) ∈ Rp2 .
θ′ ≡

(
θ(1)′, θ(2)′

)
Suppose:

h1
(
xn , θ(1)

)
is q1 × 1, where q1 ≥ p1

h2
(
xn , θ(1), θ(2)

)
is q2 × 1, where q2 ≥ p2.

Under HA:

E
[
h1
(
Xn , θ

(1)
0

)]
= 0

An identification condition for θ
(2)
0 is satisfied.

Under H0 ⊆ HA:
E
[
h1
(
Xn , θ

(1)
0

)]
= E

[
h2
(
Xn , θ

(1)
0 , θ

(2)
0

)]
≡ E [h2 (Xn , θ0)] = 0

Given θ
(1)
0 an identification criterion for θ

(1)
0 is satisfied.
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Testing in the GMM Framework
Notation

For all θ(1) ∈ Rp1 and θ(2) ∈ Rp2 we suppose there exists:

h1N
(
xn, θ(

1)
)
= h1

(
xn, θ(

1)
)
+ op

(√
N
)

h2N (xn, θ) = h2 (xn, θ) + op
(√

N
)

hN (θ) =
1
N

N

∑
n=1

hN (xn, θ) ≡
1
N

N

∑
n=1

(
h1N

(
xn, θ(

1)
)

h2N (xn, θ)

)

h1N
(

θ(1)
)
≡ 1

N

N

∑
n=1

h1N
(
xn, θ(

1)
)

SN
p→ S0 =

∞

∑
j=−∞

E
[
h (xn, θ0) h (xn−j , θ0)

′]
S (1)N

p→ S (1)0 =
∞

∑
j=−∞

E
[
h1
(
xn, θ

(1)
0

)
h1
(
xn−j , θ

(1)
0

)′]
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Testing in the GMM Framework
Two estimators and a test statistic

Under H0 there are q1 + q2− p1 − p2 overidentifying restrictions in
the minimization problem:

JN = min
θ

{
NhN (θ)

′ S−1N hN (θ)
}

Under HA there are q1− p1 (that is q2− p2 fewer) overidentifying
restrictions in the minimization problem:

J (1)N = min
θ(1)

{
Nh1N

(
θ(1)
)′ [

S (1)N
]−1

hN
(

θ(1)
)}

Form the test statistic:

tN = JN − J (1)N
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Testing in the GMM Framework
The asymptotic distribution of the test statistic

Lemma

tN
d→ χ2(q2−p2)−(q1−p1) under H0.

Corollary

Let p1 = q1 = 0. Then tN
d→ χ2q2−p2 under H0.

Corollary

Let h2 (xn, θ) = h2 (θ), a restriction on the parameter space. Then

tN
d→ χ2q2−p2 under H0. In particular tN

d→ χ2q2 if p2 = 0.
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Restrictions on the Parameter Space
Motivation

Many popular tests are restrictions on the parameter space.
These include t-tests, F -tests, and their nonlinear GMM analogues.
Given (Ω,F ,P) with the {Xn}Nn=1 stationary and ergodic (say),
define the orthogonality conditions:

HA : E [f (Xn, µ0)] = 0

H0 : E [f (Xn, µ0)] = g (µ0) = 0

In terms of the notation expressed in the second corollary above:

θ(1) = µ and θ(2) ≡ 0
h2
(

θ(1), 0
)
= g (µ)

E [f (Xn , µ0)] = E
[
h1
(
Xn , θ

(1)
0

)]
= 0 under HA

H0 imposes q2 − p2 restrictions on µ of the form

E
[
h2
(

θ
(1)
0 , 0

)]
≡ g (µ0) = 0
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Restrictions on the Parameter Space
Motivation

The test statistics for the null hypothesis fall into four major classes
(the first three sometimes called the trinity):

Wald statistics are based on deviations of the unconstrained estimates
from values consistent with the null.
Lagrange multiplier or score statistics are based on deviations of the
constrained estimates from values solving the unconstrained problem.
Distance metric statistics are based on differences in the between the
unconstrained and constrained GMM criterion function.
Minimum chi-square statistics are based on differences between the
constrained and unconstrained parameter estimates.
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Restrictions on the Parameter Space
Notation

Let µ denote an s × 1 parameter vector to be estimated and define:

fN (µ) ≡
1
N

N

∑
n=1

fN (xn, µ) ≡
1
N

N

∑
n=1

[
f (xn, µ) + op

(√
N
)]

SN , a consistent estimate of the asymptotic covariance for
√
NfN (µ0)

QN (µ) ≡
∂fN (µ)

∂µ

′
S−1N

∂fN (µ)
∂µ

QN (µ), a consistent estimate of the asymptotic covariance for µ

Now define the three estimators:

µun = argmin
{
fN (µ)

′ S−1N fN (µ)
}

µr = argmin
{
fN (µ)

′ S−1N fN (µ) : g (µ) = 0
}

µ∗r = argmin
{
(µun − µ)QN (µr )

−1 (µun − µ) : g (µ) = 0
}
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Restrictions on the Parameter Space
Four test statistics

1 Wald:

WN = Ng (µun)
′
(

∂g (µun)
∂µ

QN (µun)
−1 ∂g (µun)

∂µ

′)−1
g (µun)

2 J-statistic:

tN = N
{[
fN (µun)

′ S−1N fN (µun)
]
−
[
fN (µr )

′ S−1N fN (µr )
]}

= JN (µun)− JN (µr )
3 Lagrange multiplier (LM) (or ‘gradient test’or ‘effi cient score’):

LN = N
[
fN (µr )

′ S−1N
∂fN (µr )

∂µ

]
Q−1N

[
∂fN (µr )

′

∂µ
S−1N fN (µr )

]
4 Minimum chi-squared (MC):

cN = N (µun − µ∗r )
′ QN (µun)

−1 (µun − µ∗r )
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Restrictions on the Parameter Space
Exact (asymptotic) equivalence in the linear (nonlinear) model

In the linear model the following equalities hold:

Lemma
If f is linear in µ then:

tN = LN = cN

If f and g are both linear in µ then:

wN = tN = LN = cN

More generally in nonlinear models, the statistics converge in
probability to the same random variable, and hence have the same
asymptotic distribution:

Lemma

wN = tN + op (1) = LN + op (1) = cN + op (1)
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An Information Matrix Test
Motivation

In the standard J test HA does not restrict the data: if there are more
equations than parameters, the test simply checks how well these
overidentifying restrictions are satisfied.

This begs the questions of how to test H0 when all the orthogonality
conditions are assumed under H0.

One important type of conditional moment test is the information
matrix (IM) test.

The basic idea is that if the model is:

correct the information matrix asymptotically equals minus the Hessian.
incorrect, then equality will not generally hold, because proving the
information matrix equality exploits the fact that the joint density of
the data is the likelihood function.

The concept of Quasi-Maximum Likelihood (QML) estimation is
useful for deriving the test.
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An Information Matrix Test
Quasi-Maximum Likelihood

Suppose that the observed data {xn}Nn=1 are iid :
with distribution function G (x) under HA
G (x) = F (x , θ0) for some unknown θ0 ∈ Θ under H0.

Then under HA:

θqml ≡ argmax
θ∈Θ

{
1
N

N

∑
n=1

ln [dF (xn, θ)]

}
by a WLLN and subject to some regularity conditions

θqml
p→ argmax

θ∈Θ
E {ln [dF (xn, θ)]} ≡ θ̆ ∈ Θ

Applying a CLT, Lindeberg condition, for some covariance matrix V :
√
N
(
θqml − θ̆

) d→ N (0,V )
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An Information Matrix Test
Intuition for IM test

Recall that we showed that
√
N (θml − θ0)

d→ N (0,Σ0)

where

Σ0 = E

(
∂ lndF (x , θ0)

∂θ

∂ lndF (x , θ0)
∂θ

′
)
.

Under H0 notice θ̆ = θ0, that θqml = θml , and that V = Σ0.
There is, however, no apparent reason why V should be equal to Σ0
under HA.
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An Information Matrix Test
Testing the specification

The aim is to test the hypothesis

G (x) ∈ {F (x , θ) : θ ∈ Θ}
We consider the test based on the statistic

tN =
1
N

N

∑
n=1

c (xn, θqml ) ,

where ∫
c
(
x , θ̆
)
dG (x) ≡ t, and

t = 0 if and only if G (x) = F (x , θ0)

for some θ0 ∈ Θ, which is the same as the null hypothesis is true.

Let c be the outer partials of the score minus the information matrix

H0 : if the distribution is specified correctly

HA : if not
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An Information Matrix Test
The test

Lemma
√
N
(

θqml − θ
tN − t

)
d→ N

(
0,ΥΨΥ′

)
where

Υ =

[
∂2

∂θ∂θ′
E
(
lndF

(
xn, θ̆

))
0

∂
∂θ′

E
(
c
(
xn, θ̆

))
−I

]−1
and

Ψ =

 E
[

∂ ln dF (xn ,θ)
∂θ

∂ ln dF (xn ,θ)
∂θ

′]
E
[

∂ ln dF (xn ,θ̆)
∂θ (c (xn, θ)− t)

]′
E
[
(c (xn, θ)− t)

∂ ln dF (xn ,θ̆)
∂θ

]
E
[
(c (xn, θ)− t) (c (xn, θ)− t)′

]
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An Information Matrix Test
Quasi ML

The derivatives comes from the log likelihood itself. All we are doing is
applying a CLT theorem. How to we calculate this? We need

1 first derivative of likelihood
2 second derivative of the likelihood
3 expectations of these two.

As in corollary 4, notice that G (x) is not specified parametrically.

In practice c (x , θ) should be picked/chosen to detect violates of
interest.
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