Testing Parametric Models

Robert A. Miller

Structural Econometrics

November 2021

Introduction Some intuition

- Let H_0 denote a null hypothesis.
- Let H_A denote the *alternative hypothesis*, the complement of H_0 .
- Evidence we collect against the null might lead us to reject H_0 .
- Lacking evidence to the contrary, we might continue to believe H₀ is true, or *fail to reject* H₀.
- We can commit two types of mistakes:
 - A Type 1 error occurs (a false positive) when we falsely reject H₀. The size of the test, or the probability of landing in the critical region, gives the probability of committing a Type 1 error.
 - **2** A *Type 2 error* occurs (a false negative) when we do not reject a false H_0 . The *power* of the test is the probability of rejecting H_0 when H_A is true and that probability is well defined.
- Given a sample, we might minimize the expected loss from making either of these two mistakes, and balance it against the benefits of collecting more information.

A formalism

- The notation used in estimation readily adapts to hypothesis testing:
 - Ω is a population, or the set of all possible histories/orderings.
 - $\omega^* \in \Omega$ is one ordering of the population, or a specific history.
 - \mathcal{F}_N is a $\sigma-$ algebra induced on Ω with a sample of N= 1, 2, \dots
- Given this framework we might:
 - construct a test statistic, $T_N(\omega)$, an \mathcal{F}_N -measurable random variable.
 - fix a size, α , the probability of a Type 1 error.
 - choose a critical region, c_{α} , for rejecting H_0 that minimizes the probability of a Type 2 error.
 - reject H_0 iff $t_N \equiv T_N(\omega^*) \in c_{\alpha}$.
- The size of the test is set by convention: the notion is that only under exceptional circumstances should the null hypothesis be rejected.
- For this reason we tend to include (exclude) significant (insignificant) variables from our final regressions.

- When H_i fully specifies a probability distribution, we say H_i is simple.
- In this case H_i induces a probability space $(\Omega, \mathcal{F}_N, P_i)$.
- More generally suppose Θ_i denotes class of probability distributions for i = {0, A} containing elements θ_i ∈ Θ_i, and define:
 - $H_0: \theta \in \Theta_0$
 - $H_A: \theta \in \Theta_A$
- When Θ_i contains more than one element we say H_i is *composite*.
- For example if $X_n(\omega)$ is *iid* normal with mean μ and variance σ^2 :
 - $\Theta_0 = \{(\mu, \sigma) : \mu = 2, \sigma = 2\}$ and $\Theta_A = \{(\mu, \sigma) : \mu = 2, \sigma = 5\}$ pits two simple hypotheses against each other.
 - $\Theta_0 = \{(\mu, \sigma) : \mu = 2, \sigma = 2\}$ and $\Theta_A = \{(\mu, \sigma) : \mu = 0, \sigma > 0\}$ pits a simple hypothesis H_0 against a composite hypothesis H_A .

イロト 不得下 イヨト イヨト 二日

- Suppose H_i is simple for $i = \{0, A\}$.
- Let P_i denote the probability distribution characterizing H_i .
- We can now define:

the size of the test by
$$P_0 \{ t_N \in c_\alpha \} = \alpha$$
. (1)
the power of the test by $P_A \{ t_N \in c_\alpha \}$. (2)

- Choose c_{α} to maximize (2) subject to (1).
- That is for a given tolerance of rejecting the null hypothesis (such as incorrectly diagnosing a healthy patient as sick), we maximize the probability of rejecting a false null hypothesis (correctly diagnosing a sick patient).

Testing Simple Hypotheses

Neyman-Pearson Lemma

- To characterize the *best* test for two simple hypotheses, suppose:
 - $X\left(\omega
 ight):\Omega
 ightarrow\mathbb{R}$ is the random variable generating the sample.
 - $f_i(\cdot)$ denotes the *pdf* derived from P_i of observing x given H_i .
 - $\Lambda(x) \equiv f_A(x) / f_0(x)$ is the likelihood ratio for x of H_A relative to H_0 .
 - x_N is the sample outcome and $\Lambda_N \equiv f_A(x_N) / f_0(x_N)$.

Lemma (Neyman-Pearson)

The best (most powerful) test of H_0 against H_A of size α sets $c_{\alpha} \equiv [\Lambda_{\alpha}, \infty]$ for $\Lambda_{\alpha} \in \mathbb{R}^+$ solving:

$$P_{0}\left\{ \Lambda\left(x\right)\geq\Lambda_{\alpha}\right\} =\alpha$$

- The lemma gives a straightforward procedure for conducting the test:
 - Form $F_{\Lambda}\left(\cdot
 ight)$, the cumulative distribution function of Λ under H_{0} .
 - Solve $F_{\Lambda}(\Lambda_{\alpha}) = \alpha$ to obtain Λ_{α} .
 - Reject H_0 iff $t_N \equiv \Lambda_N \geq \Lambda_{\alpha}$.

• Letting c'_{α} denote any other critical region of size α aside from c_{α} :

$$\alpha = \int_{c_{\alpha}} f_0(x) dx = \int_{c'_{\alpha}} f_0(x) dx$$

$$\implies \int_{c_{\alpha} - c'_{\alpha}} f_0(x) dx = \int_{c'_{\alpha} - c_{\alpha}} f_0(x) dx$$

$$\implies \int_{c_{\alpha} - c'_{\alpha}} \Lambda_{\alpha} f_0(x) dx = \int_{c'_{\alpha} - c_{\alpha}} \Lambda_{\alpha} f_0(x) dx$$

But:

$$\begin{array}{lll} \Lambda \left(x \right) & \in & c_{\alpha} - c_{\alpha}' \Longrightarrow \Lambda \left(x \right) \in c_{\alpha} \Longrightarrow f_{A} \left(x \right) \geq \Lambda_{\alpha} f_{0} \left(x \right) \\ \Lambda \left(x \right) & \in & c_{\alpha}' - c_{\alpha} \Longrightarrow \Lambda \left(x \right) \in c_{\alpha}^{complement} \Longrightarrow f_{A} \left(x \right) < \Lambda_{\alpha} f_{0} \left(x \right) \\ \end{array}$$

Testing Simple Hypotheses Proof of Neyman-Pearson Lemma (two of two)

• Integrating over the regions $x \in c_{\alpha} - c'_{\alpha}$ and then $x \in c'_{\alpha} - c_{\alpha}$:

$$\int_{c_{\alpha}-c_{\alpha}'} f_{A}(x) dx \geq \int_{c_{\alpha}-c_{\alpha}'} \Lambda_{\alpha} f_{0}(x) dx = \int_{c_{\alpha}'-c_{\alpha}} \Lambda_{\alpha} f_{0}(x) dx \geq \int_{c_{\alpha}'-c_{\alpha}} f_{A}(x) dx$$

with strict inequality if the regions are different.

• Adding the region $x \in c_{\alpha} \cap c'_{\alpha}$ we obtain:

$$\int_{c_{\alpha}} f_A(x) dx = \int_{c_{\alpha} \cap c'_{\alpha}} f_A(x) dx + \int_{c_{\alpha} - c'_{\alpha}} f_A(x) dx \geq \int_{c_{\alpha} \cap c'_{\alpha}} f_A(x) dx + \int_{c'_{\alpha} - c_{\alpha}} f_A(x) dx = \int_{c'_{\alpha}} f_A(x) dx$$

Testing Composite Hypotheses

Uniformly most powerful tests

- When H_A is a composite hypothesis, the critical region typically depends on which value of θ ∈ Θ_A holds.
- In the example of the normal distribution described above, the solution to maximizing (2) subject to (1) depends on whether $\sigma = 1$ or $\sigma = 3$ under H_A .
- A uniformly most powerful test (UMP) exists when c_{α} does not vary with $\theta \in \Theta_A$.
- Roughly speaking, a UMP for composite hypotheses exists, when all three of the following conditions hold:
 - only one parameter to be estimated.
 - Ithe likelihood ratio is monotone in that parameter.
 - the test is one sided.
- When a UMP exists, following the Neyman-Pearson approach:
 - form the likelihood ratio for any of the alternatives in H_A .
 - compute its cumulative distribution function.
 - match the probability of c_{α} to the size designated by α_{\pm} .

Asymptotic Properties of Test Statistics

Consistent tests

- We encountered computation problems in deriving the *exact* (finite sample) distribution of estimators for nonlinear models.
- Aside from a few special cases, deriving the exact distribution of the likelihood ratio also demands a numerical approach.
- This has led applied researchers to focus on the large sample or asymptotic properties of test statistics.
- A desirable asymptotic property is that for any given size, the probability of a Type 2 error should vanish as the sample increases.
- Reverting to the notation let $H_0: \theta \in \Theta_0$ and $H_A: \theta \in \Theta_A$: we say $T_N(\omega)$ is *consistent* when there exists some $\theta_0 \in \Theta_0$ such that as $N \to \infty$ for all $\theta \in \Theta_A$:
 - $P_0 \{t_N \in c_{lpha}\} = lpha$ (holding constant the probability of a false positive)
 - $P_A\left\{t_N\in c_lpha
 ight\}
 ightarrow 1$ (the probability of a false negative goes to zero)

Asymptotic Properties of Test Statistics

Testing a normally distributed estimator of the parameters against a null vector

- For example, suppose $\sqrt{N}\left(\theta_{N}-\mu\right)\sim N\left(0,\Sigma
 ight)$, where:
 - $\mu \in \mathbb{R}^{s}$
 - Σ is a known $s \times s$ positive definite matrix.
- Consider the simple null hypothesis H₀ and composite alternative H_A respectively defined by:

$$\begin{array}{rcl} H_0 & : & \mu = \theta_0 \\ H_A & : & \mu \neq \theta_0 \end{array}$$

• Define the test statistic by:

$$t_{N} = N \left(\theta_{N} - \theta_{0}\right)' \Sigma^{-1} \left(\theta_{N} - \theta_{0}\right)$$

• $t_N \sim \chi^2_{df=s}$ under H_0 but under H_A the distribution is degenerate at infinity.

Asymptotic Properties of Test Statistics

A consistent test in this multivariate normal example

• This last point follows from:

$$\begin{aligned} t_{N} &= N \left(\theta_{N} - \theta_{0} \right)' \Sigma^{-1} \left(\theta_{N} - \theta_{0} \right) \\ &= N \left(\theta_{N} - \mu \right)' \Sigma^{-1} \left(\theta_{N} - \mu \right) + N \left(\mu - \theta_{0} \right)' \Sigma^{-1} \left(\mu - \theta_{0} \right) \end{aligned}$$

and that $N(\mu - \theta_0)' \Sigma^{-1}(\mu - \theta_0) \rightarrow \infty$ for all $\mu \neq \theta_0$.

- Putting some (any) probability mass in the right tail of χ²_{df=s} for any size α produces a consistent test.
- For example choose positive constants \underline{c}_{α} and \overline{c}_{α} satisfying:

$$P_0 \{ t_N \in [0, \underline{c}_{\alpha}] \} = P_0 \{ t_N \in [\overline{c}_{\alpha}, \infty] \} = \frac{\alpha}{2}$$

$$\Rightarrow P \{ t_N \in c_{\alpha} | \mu \neq \theta_0 \} > P \{ t_N \in [\overline{c}_{\alpha}, \infty] | \mu \neq \theta_0 \} \to 1$$

• Following this line of enquiry would lead us to consider asymptotically most powerful unbiased tests, in which we consider local alternative hypotheses such as $H_A: \mu = \theta_0 + N^{-1/2} \delta$ for fixed $\delta \in \mathbb{R}^s$.

Likelihood Ratio Test

The likelihood ratio test

- When testing two simple hypotheses we showed that the likelihood ratio produces the *best* test, maximizing power subject to a given size.
- For consistent tests, pitting H_0 against H_A , is no different from testing H_0 against the composite $H_0 \cup H_A$.
- Accordingly suppose:

•
$$H_A: \theta \in \Theta \subset \mathbb{R}^s_{inter}$$

- $H_A: \sigma \in \mathfrak{S} \subset \mathbb{R}_{interior}^{s-q}$ $H_0: \theta \in \mathfrak{S}_0 \subset \mathbb{R}_{interior}^{s-q}$ for some $q \in \{1, 2, \dots, s\}$
- $L_{N}(\theta)$ denotes the likelihood.
- $\theta_i^{(N)}$ denotes the MLE for $i = \{0, A\}$ under H_i .
- Define the likelihood ratio statistic (LR) as:

$$t_{N} \equiv 2\left\{\ln L_{N}\left(\theta_{A}^{(N)}\right) - \ln L_{N}\left(\theta_{0}^{(N)}\right)\right\}$$

Theorem (Wilk's theorem)

 $t_N \xrightarrow{d} \chi^2_{a}$

Testing in the GMM Framework

A framework for testing GMM estimators

(Ω, F, P_i) is {X_n} stationary and ergodic for i ∈ {0, A}, and:
θ⁽¹⁾ ∈ ℝ^{p₁}.
θ⁽²⁾ ∈ ℝ^{p₂}.
θ' ≡ (θ^{(1)'}, θ^{(2)'})
Suppose:
h_i (x = θ⁽¹⁾) is a × 1, where a ≥ n.

•
$$h_1\left(x_n, \theta^{(1)}\right)$$
 is $q_1 \times 1$, where $q_1 \ge p_1$
• $h_2\left(x_n, \theta^{(1)}, \theta^{(2)}\right)$ is $q_2 \times 1$, where $q_2 \ge p_2$.

• Under *H_A*:

•
$$E\left[h_1\left(X_n,\theta_0^{(1)}\right)\right]=0$$

• An identification condition for $\theta_0^{(2)}$ is satisfied.

• Under $H_0 \subseteq H_A$: • $E\left[h_1\left(X_n, \theta_0^{(1)}\right)\right] = E\left[h_2\left(X_n, \theta_0^{(1)}, \theta_0^{(2)}\right)\right] \equiv E\left[h_2\left(X_n, \theta_0\right)\right] = 0$ • Given $\theta_0^{(1)}$ an identification criterion for $\theta_0^{(1)}$ is satisfied.

Testing in the GMM Framework $_{\mbox{\scriptsize Notation}}$

• For all $\theta^{(1)} \in \mathbb{R}^{p_1}$ and $\theta^{(2)} \in \mathbb{R}^{p_2}$ we suppose there exists:

$$\begin{split} h_{1N}\left(x_{n},\theta^{(1)}\right) &= h_{1}\left(x_{n},\theta^{(1)}\right) + o_{p}\left(\sqrt{N}\right) \\ h_{2N}\left(x_{n},\theta\right) &= h_{2}\left(x_{n},\theta\right) + o_{p}\left(\sqrt{N}\right) \\ h_{N}\left(\theta\right) &= \frac{1}{N}\sum_{n=1}^{N}h_{N}\left(x_{n},\theta\right) \equiv \frac{1}{N}\sum_{n=1}^{N}\left(\begin{array}{c}h_{1N}\left(x_{n},\theta^{(1)}\right)\\h_{2N}\left(x_{n},\theta\right)\end{array}\right) \\ h_{1N}\left(\theta^{(1)}\right) &\equiv \frac{1}{N}\sum_{n=1}^{N}h_{1N}\left(x_{n},\theta^{(1)}\right) \\ S_{N} \xrightarrow{P} S_{0} &= \sum_{j=-\infty}^{\infty}E\left[h\left(x_{n},\theta_{0}\right)h\left(x_{n-j},\theta_{0}\right)'\right] \\ S_{N}^{(1)} \xrightarrow{P} S_{0}^{(1)} &= \sum_{j=-\infty}^{\infty}E\left[h_{1}\left(x_{n},\theta_{0}^{(1)}\right)h_{1}\left(x_{n-j},\theta_{0}^{(1)}\right)'\right] \end{split}$$

Testing in the GMM Framework

Two estimators and a test statistic

 Under H₀ there are q₁ + q₂ - p₁ - p₂ overidentifying restrictions in the minimization problem:

$$J_{N} = \min_{\theta} \left\{ Nh_{N} \left(\theta \right)' S_{N}^{-1} h_{N} \left(\theta \right) \right\}$$

• Under H_A there are $q_1 - p_1$ (that is $q_2 - p_2$ fewer) overidentifying restrictions in the minimization problem:

$$J_{N}^{(1)} = \min_{\theta^{(1)}} \left\{ Nh_{1N} \left(\theta^{(1)} \right)' \left[S_{N}^{(1)} \right]^{-1} h_{N} \left(\theta^{(1)} \right) \right\}$$

Form the test statistic:

$$t_N = J_N - J_N^{(1)}$$

Testing in the GMM Framework

The asymptotic distribution of the test statistic

Lemma

$$t_N \xrightarrow{d} \chi^2_{(q_2-p_2)-(q_1-p_1)}$$
 under H_0 .

Corollary

Let
$$p_1 = q_1 = 0$$
. Then $t_N \xrightarrow{d} \chi^2_{q_2-p_2}$ under H_0 .

Corollary

Let $h_2(x_n, \theta) = h_2(\theta)$, a restriction on the parameter space. Then $t_N \xrightarrow{d} \chi^2_{q_2-p_2}$ under H_0 . In particular $t_N \xrightarrow{d} \chi^2_{q_2}$ if $p_2 = 0$.

Restrictions on the Parameter Space

- Many popular tests are restrictions on the parameter space.
- These include *t*-tests, *F*-tests, and their nonlinear GMM analogues.
- Given (Ω, \mathcal{F}, P) with the $\{X_n\}_{n=1}^N$ stationary and ergodic (say), define the orthogonality conditions:

$$\begin{aligned} H_A &: & E\left[f\left(X_n, \mu_0\right)\right] = 0 \\ H_0 &: & E\left[f\left(X_n, \mu_0\right)\right] = g\left(\mu_0\right) = 0 \end{aligned}$$

• In terms of the notation expressed in the second corollary above:

•
$$\theta^{(1)} = \mu$$
 and $\theta^{(2)} \equiv 0$
• $h_2\left(\theta^{(1)}, 0\right) = g\left(\mu\right)$
• $E\left[f\left(X_n, \mu_0\right)\right] = E\left[h_1\left(X_n, \theta_0^{(1)}\right)\right] = 0$ under H_A
• H_0 imposes $q_2 - p_2$ restrictions on μ of the form
 $E\left[h_2\left(\theta_0^{(1)}, 0\right)\right] \equiv g\left(\mu_0\right) = 0$

- The test statistics for the null hypothesis fall into four major classes (the first three sometimes called the *trinity*):
 - *Wald statistics* are based on deviations of the unconstrained estimates from values consistent with the null.
 - Lagrange multiplier or score statistics are based on deviations of the constrained estimates from values solving the unconstrained problem.
 - Distance metric statistics are based on differences in the between the unconstrained and constrained GMM criterion function.
 - *Minimum chi-square statistics* are based on differences between the constrained and unconstrained parameter estimates.

Restrictions on the Parameter Space Notation

• Let μ denote an $s \times 1$ parameter vector to be estimated and define:

$$f_{N}(\mu) \equiv \frac{1}{N} \sum_{n=1}^{N} f_{N}(x_{n}, \mu) \equiv \frac{1}{N} \sum_{n=1}^{N} \left[f(x_{n}, \mu) + o_{p}\left(\sqrt{N}\right) \right]$$

• S_N , a consistent estimate of the asymptotic covariance for $\sqrt{Nf_N(\mu_0)}$

$$Q_{N}(\mu) \equiv \frac{\partial f_{N}(\mu)}{\partial \mu}' S_{N}^{-1} \frac{\partial f_{N}(\mu)}{\partial \mu}$$

• $Q_N(\mu)$, a consistent estimate of the asymptotic covariance for μ

Now define the three estimators:

$$\mu_{un} = \operatorname{argmin} \{ f_{N}(\mu)' S_{N}^{-1} f_{N}(\mu) \}$$

$$\mu_{r} = \operatorname{argmin} \{ f_{N}(\mu)' S_{N}^{-1} f_{N}(\mu) : g(\mu) = 0 \}$$

$$\mu_{r}^{*} = \operatorname{argmin} \{ (\mu_{un} - \mu) Q_{N}(\mu_{r})^{-1} (\mu_{un} - \mu) : g(\mu) = 0 \}$$

Restrictions on the Parameter Space

Four test statistics

Wald:

$$W_{N} = Ng \left(\mu_{un}\right)' \left(\frac{\partial g \left(\mu_{un}\right)}{\partial \mu} Q_{N} \left(\mu_{un}\right)^{-1} \frac{\partial g \left(\mu_{un}\right)'}{\partial \mu}\right)^{-1} g \left(\mu_{un}\right)$$

J-statistic:

$$t_{N} = N \left\{ \left[f_{N} (\mu_{un})' S_{N}^{-1} f_{N} (\mu_{un}) \right] - \left[f_{N} (\mu_{r})' S_{N}^{-1} f_{N} (\mu_{r}) \right] \right\}$$

= $J_{N} (\mu_{un}) - J_{N} (\mu_{r})$

S Lagrange multiplier (LM) (or 'gradient test' or 'efficient score'):

$$L_{N} = N \left[f_{N} \left(\mu_{r} \right)' S_{N}^{-1} \frac{\partial f_{N} \left(\mu_{r} \right)}{\partial \mu} \right] Q_{N}^{-1} \left[\frac{\partial f_{N} \left(\mu_{r} \right)'}{\partial \mu} S_{N}^{-1} f_{N} \left(\mu_{r} \right) \right]$$

Minimum chi-squared (MC):

$$c_{N} = N \left(\mu_{un} - \mu_{r}^{*} \right)' Q_{N} \left(\mu_{un} \right)^{-1} \left(\mu_{un} - \mu_{r}^{*} \right)$$

Restrictions on the Parameter Space Exact (asymptotic) equivalence in the linear (nonlinear) model

• In the linear model the following equalities hold:

Lemma

If f is linear in µ then:

$$t_N = L_N = c_N$$

If f and g are both linear in μ then:

$$w_N = t_N = L_N = c_N$$

 More generally in nonlinear models, the statistics converge in probability to the same random variable, and hence have the same asymptotic distribution:

Lemma

$$w_{N} = t_{N} + o_{p}(1) = L_{N} + o_{p}(1) = c_{N} + o_{p}(1)$$

An Information Matrix Test

- Motivation
 - In the standard J test H_A does not restrict the data: if there are more equations than parameters, the test simply checks how well these overidentifying restrictions are satisfied.
 - This begs the questions of how to test H_0 when all the orthogonality conditions are assumed under H_0 .
 - One important type of conditional moment test is the *information matrix* (IM) test.
 - The basic idea is that if the model is:
 - correct the information matrix asymptotically equals minus the Hessian.
 - incorrect, then equality will not generally hold, because proving the information matrix equality exploits the fact that the joint density of the data is the likelihood function.
 - The concept of *Quasi-Maximum Likelihood* (QML) estimation is useful for deriving the test.

An Information Matrix Test

Quasi-Maximum Likelihood

- Suppose that the observed data $\{x_n\}_{n=1}^N$ are *iid*:
 - with distribution function G(x) under H_A
 - $G(x) = F(x, \theta_0)$ for some unknown $\theta_0 \in \Theta$ under H_0 .
- Then under *H_A*:

$$\theta_{qml} \equiv \operatorname*{argmax}_{\theta \in \Theta} \left\{ \frac{1}{N} \sum_{n=1}^{N} \ln \left[dF(x_n, \theta) \right] \right\}$$

by a WLLN and subject to some regularity conditions

$$\theta_{qml} \xrightarrow{p} \underset{\theta \in \Theta}{\operatorname{argmax}} \operatorname{E} \left\{ \ln \left[dF\left(x_{n}, \theta \right) \right] \right\} \equiv \breve{\theta} \in \Theta$$

• Applying a CLT, Lindeberg condition, for some covariance matrix V:

$$\sqrt{N}\left(\theta_{qml}-\breve{\theta}\right)\stackrel{d}{\rightarrow}\mathcal{N}\left(0,V\right)$$

Recall that we showed that

$$\sqrt{N}\left(\theta_{ml}-\theta_{0}\right)\overset{d}{\rightarrow}\mathcal{N}\left(0,\Sigma_{0}\right)$$

where

$$\Sigma_{0} = E\left(\frac{\partial \ln dF(x,\theta_{0})}{\partial \theta} \frac{\partial \ln dF(x,\theta_{0})}{\partial \theta}'\right)$$

- Under H_0 notice $\check{\theta} = \theta_0$, that $\theta_{qml} = \theta_{ml}$, and that $V = \Sigma_0$.
- There is, however, no apparent reason why V should be equal to Σ₀ under H_A.

An Information Matrix Test

Testing the specification

• The aim is to test the hypothesis

$$G(x) \in \{F(x,\theta) : \theta \in \Theta\}$$

• We consider the test based on the statistic

$$t_N = \frac{1}{N} \sum_{n=1}^N c(x_n, \theta_{qml}),$$

where

$$\int c(x,\check{\theta}) dG(x) \equiv t, \quad \text{and}$$

t = 0 if and only if $G(x) = F(x,\theta_0)$

for some $\theta_0 \in \Theta$, which is the same as the null hypothesis is true.

- Let c be the outer partials of the score minus the information matrix
 - H_0 : if the distribution is specified correctly

An Information Matrix Test

The test

Lemma

$$\sqrt{N} \left(\begin{array}{c} \theta_{qml} - \theta \\ t_N - t \end{array} \right) \xrightarrow{d} \mathcal{N} \left(0, \mathbf{Y} \Psi \mathbf{Y}' \right)$$

where

$$\mathbf{Y} = \left[\begin{array}{c} \frac{\partial^2}{\partial \theta \partial \theta'} \mathbf{E} \left(\ln d \boldsymbol{F} \left(\boldsymbol{x}_n, \breve{\theta} \right) \right) & \mathbf{0} \\ \frac{\partial}{\partial \theta'} \mathbf{E} \left(\boldsymbol{c} \left(\boldsymbol{x}_n, \breve{\theta} \right) \right) & -\boldsymbol{I} \end{array} \right]^{-}$$

and

$$\Psi = \begin{bmatrix} E\left[\frac{\partial \ln dF(x_{n},\theta)}{\partial \theta}\frac{\partial \ln dF(x_{n},\theta)}{\partial \theta}'\right] & E\left[\frac{\partial \ln dF(x_{n},\check{\theta})}{\partial \theta}(c(x_{n},\theta)-t)\right]' \\ E\left[(c(x_{n},\theta)-t)\frac{\partial \ln dF(x_{n},\check{\theta})}{\partial \theta}\right] & E\left[(c(x_{n},\theta)-t)(c(x_{n},\theta)-t)'\right] \end{bmatrix}$$

3

Image: A match a ma

The derivatives comes from the log likelihood itself. All we are doing is applying a CLT theorem. How to we calculate this? We need

- first derivative of likelihood
- econd derivative of the likelihood
- expectations of these two.
- As in corollary 4, notice that G(x) is not specified parametrically.
- In practice $c(x, \theta)$ should be picked/chosen to detect violates of interest.