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Introduction
Basic setup

The linear model is defined by the equation:

yn = x ′nβ0 + εn (1)

where n ∈ {1, 2, . . .} belongs to a population and:
yn is a 1× 1 observed dependent variable
xn is a k × 1 vector of observed explanatory variables
β0 is a k × 1 unknown parameter to be estimated
εn is a 1× 1 unobserved idiosyncratic variable.

The goal is to estimate β0 from a sample {yn, xn}Nn=1 of size N.
There are essentially three reasons why the linear model has become
the workhorse in econometrics:

1 the model is easy to understand
2 the estimator for the unknown coeffi cient is easy to compute
3 the finite sample properties of the estimator are known

To preface nonlinear estimation this lecture reviews the linear model.
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Introduction
Example 1: differences in differences

To illustrate one application of the linear model consider a differences
in differences (DID) framework.
Here the goal is to decontaminate the effects of a changing a regime,
or more generally the effect of a particular factor of interest, from
other extraneous factors, such as a time trend.
We might write:

yn = β00 + β01tn + β02xn + β03xntn + εn

where β0 ≡ (β00, β01, β02, β03) and (xn, tn) ∈ {0, 1} × {0, 1}.
Intuitively there are N observations, some of which are sampled in the
first period, the others in the second, where a proportion are treated
with a factor of interest (setting xn = 1) and a proportion are left
untreated (setting xn = 0).
This model is saturated because there are as many coeffi cients to be
estimated as there are different combinations of (x , t).
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Introduction
Example 2: regression discontinuity design

A second example is the regression discontinuity design (RDD)
framework.

Similar in some ways to DID, we seek to separate the effects of a
changing a regime from other nonlinear effects that a particular
explanatory variable might have on the dependent variable.

For example let:

yn = β00 + β0K 1 {xn ≤ c}+∑K−1
k=1 β0kx

k
n + εn

where β0 ≡ (β00, β01, . . . , β0K ) and c ∈ R is a cut-off value that
might be crucial to determining how x affects y .

This framework is used to flexibly model known discontinuities within
an otherwise smooth nonlinear equation.
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Introduction
Example 3: fixed effects

Models of fixed effects (FE) arise when there are multiple
observations on each individual n ∈ {1, 2, . . . ,N}, perhaps because
they are sampled over time t ∈ {1, 2, . . . ,T}.
Alternatively there might be several measurements of dependent
variable, each of which is measured with error.
We extend the notation for characterizing the data by writing:

ynt = x ′ntβ0 + γn + εnt (2)

where:
ynt is a 1× 1 observed dependent variable
xnt is a k × 1 vector of observed explanatory variables
β0 is a k × 1 unknown parameter to be estimated
γn is a k × 1 unknown ancillary (or nuisance) parameter
εnt is a 1× 1 unobserved idiosyncratic variable.

We estimate β0 from panel data {ynt , xnt}NTn=1 with NT observations.
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Introduction
The ordinary least squares estimator

The ordinary least squares (OLS) estimator of β0 is defined as:

β
(N )
OLS ≡ argmin

β

{
∑N
n=1

(
yn − x ′nβ

)2}
= argmin

β
∑N
n=1

[
y2n − 2β′xnyn +

(
x ′nβ
) (
x ′nβ
)]

The k × 1 first order condition (FOC) for this problem is:

0 = −2∑N
n=1 xnyn + 2∑N

n=1 xnx
′
nβ
(N )
OLS

If the k × k matrix 1
N ∑N

n=1 xnx
′
n has a nonzero determinant, then it is

invertible and:

β
(N )
OLS =

(
1
N ∑N

n=1 xnx
′
n

)−1 ( 1
N ∑N

n=1 xnyn

)
(3)

If 1N ∑N
n=1 xnx

′
n is not invertible then the solution to this quadratic

minimization problem is not unique.
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Linear Projections
Metrics for approximations

Let Fy ,x (y , x) denote the joint distribution function of (y , x) for the
population, or data generating process.
Also define an Lp space of real valued functions of (y , x), with
elements h (y , x) ∈ Lp , by the condition:∫

|h (y , x)|p dFy ,x (y , x) < ∞

equipped with norm:

‖h (y , x)‖Lp ≡
[∫
|h (y , x)|p dFy ,x (y , x)

] 1
p

Given an Lp space define the linear projection of y on to x as:

β‖·‖Lp
≡ argmin

β∈Rk

∥∥y − x ′β∥∥Lp = argmin
β∈Rk

{
E
[∣∣y − x ′β∣∣p]} (4)

Thus β‖·‖Lp
defines how closely a linear function of x is to central

tendencies of the conditional distribution Fy |x (y |x ).
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Linear Projections
Projecting y on x

If p = 2, then β‖·‖Lp
becomes:

βOLS ≡ argminE
[(
y − x ′β

)2]
= argminE

[
−2β′xy +

(
x ′β
)2]

with the FOC reducing to:

E
[
yx ′
]
= E

[
xx ′
]

βOLS

If E [xnx ′n ] is invertible then:

βOLS = E
[
xx ′
]−1 E [xy ]

In this case β
(N )
OLS is the sample analogue of β̂, is found by replacing:

E
[
xx ′
]
with

(
1
N ∑N

n=1 xnx
′
n

)
and E [xy ] with

(
1
N ∑N

n=1 xnyn

)
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Linear Projection
Projecting y on x with a different norm

Using a different norm changes the solution to the linear projection.
For example if ‖z‖ ≡ E [|z |] then (4) reduces to:
βLAD ≡ argmin

β
E
[∣∣y − x ′β∣∣] = argmin

β
E
[
max

{
y − x ′β, x ′β− y

}]
The sample analogue of βLAD , called the least absolute deviations
(LAD) estimator, minimizes:

1
N ∑N

n=1

∣∣yn − x ′nβ
∣∣ (5)

Note (5) is not differentiable with respect to β wherever yn = x ′nβ.

Nevertheless β̂
(N )
LAD is the solution to the linear program:

β̂
(N )
LAD ≡ argmin

β,u1,...,uN

1
N ∑N

n=1 un

such that un ≥ yn − x ′nβ and un ≥ x ′nβ− yn
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Quantile Estimators
Rationale and definition

The LAD estimator is an example of a quantile estimator.
For any τ ∈ (0, 1) choose β to minimize:

E
[
(τ − 1)

∫ x ′β

−∞

(
y − x ′β

)
dF (y |x ) + τ

∫ ∞

x ′β

(
y − x ′β

)
dF (y |x )

]
(Note y ≤ x ′β in the first integral and y ≥ x ′β in the second.)
The FOC for the solution βτ is:

E
[
(1− τ)

∫ x ′βτ

−∞
dF (y |x ) = τ

∫ ∞

x ′βτ

dF (y |x )
]

and a sample analogue, β(N )τ , minimizes:

1
N ∑N

n=1

[
(τ − 1) I

{
yn ≤ x ′nβ

}
+ τI

{
yn > x ′nβ

}] (
yn − x ′nβ

)
Setting τ = 0.5, the median, defines the LAD estimator.
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Ordinary Least Squares
Estimation error

Substituting (1) into (3) yields:

β
(N )
OLS =

(
1
N ∑N

n=1 xnx
′
n

)−1 [ 1
N ∑N

n=1 xn
(
x ′nβ0 + εn

)]
=

(
1
N ∑N

n=1 xnx
′
n

)−1 ( 1
N ∑N

n=1 xnx
′
n

)
β0

+

(
1
N ∑N

n=1 xnx
′
n

)−1 ( 1
N ∑N

n=1 xnεn

)
= β0 +

(
1
N ∑N

n=1 xnx
′
n

)−1 ( 1
N ∑N

n=1 xnεn

)
Thus the estimation error is:

δ
(N )
OLS ≡ β

(N )
OLS − β0 =

(
1
N ∑N

n=1 xnx
′
n

)−1 ( 1
N ∑N

n=1 xnεn

)
(6)
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Ordinary Least Squares
An orthogonality condition assumption

Denote x (N ) ≡ (x1, . . . , xN ) and assume E
[
εn

∣∣∣x (N ) ] = 0.
Then E

[
δ
(N )
OLS

∣∣∣x (N ) ] = 0, and β
(N )
OLS is unbiased, meaning:

E
[

β
(N )
OLS

∣∣∣x (N ) ] = β0

When E
[
εn

∣∣∣x (N ) ] = 0 the variance of β
(N )
OLS is:

E


[(

1
N ∑N

n=1 xnx
′
n

)−1 (
1
N ∑N

n=1 xnεn
)]

×
[(

1
N ∑N

n=1 xnx
′
n

)−1 (
1
N ∑N

n=1 xnεn
)]′ ∣∣∣x (N )

 (7)

= E

 ( 1N ∑N
n=1 xnx

′
n

)−1
×(

1
N 2 ∑N

n=1 ∑N
m=1 xnεnεmx ′m

) (
1
N ∑N

n=1 xnx
′
n

)−1 ∣∣∣x (N )
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Ordinary Least Squares
A further specialization

Suppose it is also true that:

E
[
εnεm

∣∣∣x (N ) ] = { σ2 if m = n
0 if m 6= n (8)

Then (7) simplifies to:

E
[
δ
(N )
OLS δ

(N )′
OLS

∣∣∣x (N ) ]
=

(
1
N ∑N

n=1 xnx
′
n

)−1
×(

1
N 2 ∑N

n=1 ∑N
m=1 xnE [εnεm |xn, xm ] x ′m

∣∣∣x (N )) ( 1N ∑N
n=1 xnx

′
n

)−1
=

(
1
N ∑N

n=1 xnx
′
n

)−1 ( σ2

N2 ∑N
n=1 xnx

′
n

)(
1
N ∑N

n=1 xnx
′
n

)−1
=

σ2

N

{(
1
N ∑N

n=1 xnx
′
n

)−1}
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Generalized Least Squares
A transformation

Assume E
[
εn

∣∣∣x (N ) ] = 0 for all n ∈ {1, . . . ,N}.
Let ε(N ) ≡ (ε1, . . . , εN )

′ denote the vector of unobserved variables.

Denote their covariance matrix by Ψ ≡ E
[
ε(N )ε(N )′

∣∣∣x (N ) ].
Since Ψ is positive definite, Ψ−1/2 exists and satisfies:

Ψ−1 = Ψ−1/2Ψ−1/2

Stack the individual equations and premultiply the resulting matrix
equation by Ψ−1/2 to obtain a transformation of (1):

y ∗n = x
∗′
n β+ ε∗n (9)

where:

(y ∗1 , . . . , y ∗N )
′ ≡ Ψ−1/2 (y1, . . . , yN )

′

(ε∗1, . . . , ε∗N )
′ ≡ Ψ−1/2 (ε1, . . . , εN )

′

(x∗1 , . . . , x∗N ) ≡ (x1, . . . , xN )Ψ−1/2
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Generalized Least Squares
Definition

We define the generalized least squares (GLS) estimator by:

β
(N )
GLS ≡ argmin

β

{
∑N
n=1

(
y ∗n − x∗′n β

)2}
=

(
1
N ∑N

n=1 x
∗
n x
∗′
n

)−1 ( 1
N ∑N

n=1 x
∗
n y
∗
n

)
The assumptions in the previous slide imply:

E
[
ε∗n

∣∣∣x (N ) ] = 0

E
[
ε∗nε∗m

∣∣∣x (N ) ] =

{
1 if m = n
0 if m 6= n

Thus β
(N )
GLS is unbiased.
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Generalized Least Squares
A random effects estimator for panel data

Returning to the model of panel data {ynt , xnt}NTn=1 with specification
(2) we briefly consider the following two estimators.

The first defines:
ε̂nt ≡ γn + εnt

and treats the equation be estimated as:

ynt = x ′ntβ0 + ε̂nt (10)

A random effects estimator (RE) is to conduct OLS or GLS on (10).

Without loss of generality E [εnt |γn ] = 0. The RE estimator is
unbiased if:

E
[
εnt

∣∣∣x (N ) ] = E [γn ∣∣∣x (N ) ] = 0
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Generalized Least Squares
A first-difference estimator for panel data

Alternatively apply the difference operator to (2) and obtain:

∆ynt = ∆x ′ntβ0 + ∆εnt (11)

where:

∆ynt ≡ yn,t+1 − ynt
∆xnt ≡ xn,t+1 − xnt
∆εnt ≡ εn,t+1 − εnt

Then using (11) estimate β0 from {ynt , xnt}
N ,T−1
n=1 with OLS or GLS.

The FD estimator is unbiased if:

E
[
εnt

∣∣∣x (N ) ] = 0
but correlations between xnt and γn do not affect the properties of
this estimator.
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Generalized Least Squares
Constructing the covariance matrices for these two GLS estimators

Without loss of generality E [εnt |γn ] = 0 and hence:
E [εnt |γn ] = 0⇒ E [εntγn ] = 0

For now we also assume:
E [εntεms ] = 0 for all m 6= n and all (s, t)
E [εntεns ] = 0 for all s 6= t
E
[
ε2nt
]
= σ2ε

If E
[
γ2n
]
= σ2γ and E [γnγm ] = 0 for all m 6= n, then the nonzero

elements of ΨRE are:

E [ε̂nt ε̂ns ] =
{

σ2 + σ2γ if s = t
σ2γ if s 6= t

By way of contrast the only nonzero elements of ΨFD are:

E [∆εnt∆εns ] =

{
2σ2ε if s = t
−σ2ε if s = t + 1
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Linear Instrumental Variables
Motivation

Rearranging the FOC for the quadratic defining OLS gives:

0 = ∑N
n=1 xn

(
yn − x ′nβ

(N )
OLS

)
As a matter of computation β

(N )
OLS is obtained by:

premultiplying
(
yn − x ′nβ

(N )
OLS

)
by xn

solving the resulting k equations in k unknowns.

Moreover its unbiasedness stems from the assumption that:

0 = E
[
εn

∣∣∣x (N ) ] = E [yn − x ′nβ0

∣∣∣x (N ) ]
Instead of premultiplying

(
yn − x ′nβ

(N )
OLS

)
by xn we could premultiply(

yn − x ′nβ
(N )
OLS

)
by zn ≡ Awn for some k × l matrix A and some l × 1

instrument vector, where l > k, and base the estimator on a different
set of equations.
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Linear Instrumental Variables
Definition

Accordingly define an instrumental variables (IV) estimator by:

0 = ∑N
n=1 zn

(
yn − x ′nβ

(N )
IV

)
If 1N ∑N

n=1 znx
′
n is invertible (has a nonzero determinant), then similar

to above:

β
(N )
IV =

(
1
N ∑N

n=1 znx
′
n

)−1 ( 1
N ∑N

n=1 znyn

)
To investigate the finite sample properties of β

(N )
IV we follow the same

reasoning we applied to β
(N )
OLS by substituting for yn to obtain:

β
(N )
IV =

(
1
N ∑N

n=1 znx
′
n

)−1 1
N ∑N

n=1 zn
(
x ′nβ0 + εn

)
= β0 +

(
1
N ∑N

n=1 znx
′
n

)−1 ( 1
N ∑N

n=1 znεn

)
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Linear Instrumental Variables
Conditions for the existence of an unbiased estimator

In this case the estimation error is:

δ
(N )
IV ≡ β

(N )
IV − β0 =

(
1
N ∑N

n=1 znx
′
n

)−1 ( 1
N ∑N

n=1 znεn

)
(12)

Let v (N ) ≡
(
x (N ),w (N )

)
. If E

[
εn

∣∣∣v (N ) ] = 0 then
E
[
δ
(N )
IV

∣∣∣v (N ) ] = 0 and β
(N )
IV is unbiased, and (as we show on the

next slides):

E
[
δ
(N )
IV δ

(N )′
IV

∣∣∣v (N ) ] = 1
N

Υ(N )E
[
Ω(N )

∣∣∣v (N ) ]Υ(N )′

where:

Υ(N ) ≡
(
1
N ∑N

n=1 znx
′
n

)−1
Ω(N ) ≡ 1

N ∑N
n=1 znz

′
nε2n +

1
N ∑N

s=2 ∑s−1
n=1

(
znz ′n+s + zn+sz

′
n

)
εnεn+s
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Linear Instrumental Variables
Parsing the covariance

From (12):

E
[
δ
(N )
IV δ

(N )′
IV

∣∣∣v (N ) ]
= E


(
1
N ∑N

n=1 znx
′
n

)−1 (
1
N ∑N

n=1 znεn
)

×
(
1
N ∑N

n=1 zmεm
)′ (

1
N ∑N

n=1 znx
′
n

)−1′ ∣∣∣v (N )


= Υ(N )E

{(
1
N

N

∑
n=1

znεn

)(
1
N

N

∑
m=1

zmεm

)′ ∣∣∣v (N )}Υ(N )
′
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Linear Instrumental Variables
Parsing the covariance (continued)

Focusing on the middle terms involving εn and εm :(
∑N
n=1 znεn

) (
∑N
n=1 zmεm

)′
= ∑N

n=1 ∑N
m=1 znεnεmz ′m

= ∑N
n=1 znε2nz

′
n +∑N

s=2 ∑s−1
n=1

(
znz ′n+s + zn+sz

′
n

)
εnεn+s

The last line comes from visualizing the matrix of terms: z1ε21z
′
1 · · · z1ε1εN z ′N

...
. . .

...
zN εN ε1z ′1 · · · zN ε2N z

′
N


Substituting the expression above back into the formula for the
variance gives the result.
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Constrained Least Squares
Definition and Solution

Now suppose we have information about the unknown parameter
vector β0 that takes the form of a linear constraint, q equations in β0:

Qβ0 = c (13)

where:
Q is a q × k matrix
c a q × 1 vector
as before β0 is k × 1.

The constrained least squares (CLS) estimator is defined by:

β
(N )
CLS ≡ argmin

β

{
∑N
n=1

(
yn − x ′nβ

)2 such that Qβ = c
}

The next slides show β
(N )
CLS − β

(N )
OLS =[(

1
N ∑N

n=1 xnx
′
n

)−1
Q ′
] [
Q
(
1
N ∑N

n=1 xnx
′
n

)−1
Q ′
]−1 (

Qβ
(N )
OLS − c

)
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Constrained Least Squares
Proof of formula for CLS

Define:
η ≡ β

(N )
CLS − β

(N )
OLS γ ≡ c −Qβ

(N )
OLS (14)

The Lagrangian for the optimization problem can be written as:

∑N
n=1

(
yn − x ′nβ

)2
+ λ (Qβ− c)

and has FOC:

0 = −
(
2
N ∑N

n=1 xnyn

)
+

(
2
N ∑N

n=1 xnx
′
n

)
β
(N )
CLS +Qλ

=

(
2
N ∑N

n=1 xnx
′
n

) [
β
(N )
CLS −

(
∑N
n=1 xnx

′
n

)−1
∑N
n=1 xnyn

]
+Qλ

=

(
2
N ∑N

n=1 xnx
′
n

)(
β
(N )
CLS − β

(N )
OLS

)
+Qλ

=

(
2
N ∑N

n=1 xnx
′
n

)
η +Qλ (15)
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Constrained Least Squares
Proof of formula for CLS continued

From (14) and (15):

0 = Qβ
(N )
CLS − c = Q

(
β
(N )
CLS − β

(N )
OLS

)
− c +Qβ

(N )
OLS = Qη − γ

η = −
(
2N−1 ∑N

n=1 xnx
′
n

)−1
Q ′λ (16)

Solving for λ in terms of γ using (16):

γ = Qη = −Q
(
2N−1 ∑N

n=1 xnx
′
n

)−1
Q ′λ

⇒ λ = −
[
Q
(
2N−1 ∑N

n=1 xnx
′
n

)−1
Q ′
]−1

γ

⇒ η =

[(
∑N
n=1 xnx

′
n

)−1
Q ′
] [
Q
(
∑N
n=1 xnx

′
n

)−1
Q ′
]−1

γ

Using the definitions of η and γ the formula now follows directly.
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Specification Error versus Effi ciency
Trading off effi ciency with specification error

Even if E [εn |xn ] 6= 0 and hence β
(N )
OLS is biased, an unbiased

estimator β
(N )
IV can be obtained if there exists some zn satisfying:

1 the invertibility assumption for 1N ∑Nn=1 znx
′
n

2 the orthogonality condition E [εn |zn ] = 0.
This raises the question of why OLS is ever used instead of IV, since
the latter seems less restrictive.
In Assignment 3 you are asked to show that:

E
[
δ
(N )
OLS δ

(N )′
OLS

]
≤ E

[
δ
(N )
IV δ

(N )′
IV

]
Similarly one can show that:

E
[
δ
(N )
CLS δ

(N )′
CLS

]
≤ E

[
δ
(N )
OLS δ

(N )′
OLS

]
Comparing the FE and the RE estimators raises similar issues. The
former is based on N (T − 1) observations, but the latter requires
E [γn |xnt ] = 0 for unbiasedness.
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Specification Error versus Effi ciency
Mean square error

The mean square error (MSE) is one way to evaluate the trade-off
between bias and variance.
Let θ ≡ ∑K−1

k=0 ak βk be a known linear combination of β defined by
a ≡ (a0, . . . , aK−1) ∈ RK .
For any estimator θ(N ) of θ0 we define the MSE as:

MSE
(

θ(N )
)
≡ E

[(
θ(N ) − θ0

)2]
= E

[(
θ(N ) − E

[
θ(N )

]
+ E

[
θ(N )

]
− θ0

)2]

= E

 {θ(N ) − E
[
θ(N )

]}2
+
{
E
[
θ(N )

]
− θ0

}2
+2
{

θ(N ) − E
[
θ(N )

]} {
E
[
θ(N )

]
− θ0

}


= E
[{

θ(N ) − E
[
θ(N )

]}2]
+
{
E
[
θ(N )

]
− θ0

}2
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Shrinkage Estimators
CLS as a response to overfitting

Loosely speaking, the term overfitting means:
massaging the data with enough parameters and variables
in order to explain the sample very well
without reference to the underlying population.

A fundamental limitation of this approach is that:
since the population does not exactly replicate the sample,
predicting out of sample is problematic.

By imposing linear constraints on the model CLS:
reduces (or shrinks) the dimension of the basis defining the parameter
space
and in this way increases the precision of the estimates,
that is if the constraints are (approximately) correct.

One advantage of CLS, interpreted as a shrinkage estimator, is that
the constraints are often easy to interpret, and may have some
economic or institutional content.
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Shrinkage Estimators
Lasso and Ridge regressions

Another approach is to shrink the parameters by choosing β to
minimize:

N−1 ∑N
n=1

(
yn − x ′nβ

)2 subject to (∑K
k=1 |βk |

p
)1/p

≤ t (17)

for some p ∈ R+ and t ∈ R+.

The lasso (least absolute shrinkage and selection operator) estimator
solves (17) for p = 1.

The ridge (or Stein) estimator solves (17) for p = 2.

A third variation, the best subset selection, is defined by requiring
t ∈ {1, . . . ,K − 1} and replacing (17) with:

N−1 ∑N
n=1

(
yn − x ′nβ

)2 subject to∑K
k=1 1 {βk 6= 0} ≤ t
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Shrinkage Estimators
Lasso and Ridge regressions

All three estimators (trivially) reduce overfitting, by constraining the
objective function.

Lasso and Ridge penalize all candidate values of βk relative to their
OLS counterparts.

Lasso and best-subset-selection eliminate regressors with low
explanatory power in OLS.

Combining these estimators with machine learning could be useful in
pointing to empirical patterns that guide the development of a
structural model.

However this class of estimators is not motivated by an economic
theory that explains comovements within the population, so is not
particularly useful for predictive purposes outside of the sample.
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