Linear Models

Robert A. Miller

Structural Econometrics

October 2021

Basic setup

The linear model is defined by the equation:

$$y_n = x_n' \beta_0 + \epsilon_n \tag{1}$$

where $n \in \{1, 2, ...\}$ belongs to a population and:

- y_n is a 1×1 observed dependent variable
- ullet x_n is a $k \times 1$ vector of observed explanatory variables
- ullet eta_0 is a k imes 1 unknown parameter to be estimated
- ϵ_n is a 1×1 unobserved idiosyncratic variable.
- The goal is to estimate β_0 from a sample $\{y_n, x_n\}_{n=1}^N$ of size N.
- There are essentially three reasons why the linear model has become the workhorse in econometrics:
 - 1 the model is easy to understand
 - the estimator for the unknown coefficient is easy to compute
 - the finite sample properties of the estimator are known
- To preface nonlinear estimation this lecture reviews the linear model.

Example 1: differences in differences

- To illustrate one application of the linear model consider a differences in differences (DID) framework.
- Here the goal is to decontaminate the effects of a changing a regime, or more generally the effect of a particular factor of interest, from other extraneous factors, such as a time trend.
- We might write:

$$y_n = \beta_{00} + \beta_{01}t_n + \beta_{02}x_n + \beta_{03}x_nt_n + \epsilon_n$$

where
$$\beta_0 \equiv (\beta_{00}, \beta_{01}, \beta_{02}, \beta_{03})$$
 and $(x_n, t_n) \in \{0, 1\} \times \{0, 1\}$.

- Intuitively there are N observations, some of which are sampled in the first period, the others in the second, where a proportion are treated with a factor of interest (setting $x_n = 1$) and a proportion are left untreated (setting $x_n = 0$).
- This model is *saturated* because there are as many coefficients to be estimated as there are different combinations of (x, t).

Example 2: regression discontinuity design

- A second example is the regression discontinuity design (RDD) framework.
- Similar in some ways to DID, we seek to separate the effects of a changing a regime from other nonlinear effects that a particular explanatory variable might have on the dependent variable.
- For example let:

$$y_n = \beta_{00} + \beta_{0K} 1 \{x_n \le c\} + \sum_{k=1}^{K-1} \beta_{0k} x_n^k + \epsilon_n$$

where $\beta_0 \equiv (\beta_{00}, \beta_{01}, \dots, \beta_{0K})$ and $c \in \mathbb{R}$ is a cut-off value that might be crucial to determining how x affects y.

 This framework is used to flexibly model known discontinuities within an otherwise smooth nonlinear equation.

Example 3: fixed effects

- Models of fixed effects (FE) arise when there are multiple observations on each individual $n \in \{1, 2, ..., N\}$, perhaps because they are sampled over time $t \in \{1, 2, ..., T\}$.
- Alternatively there might be several measurements of dependent variable, each of which is measured with error.
- We extend the notation for characterizing the data by writing:

$$y_{nt} = x'_{nt}\beta_0 + \gamma_n + \epsilon_{nt} \tag{2}$$

where:

- y_{nt} is a 1×1 observed dependent variable
- x_{nt} is a $k \times 1$ vector of observed explanatory variables
- $oldsymbol{\circ}$ eta_0 is a k imes 1 unknown parameter to be estimated
- \bullet γ_n is a $k \times 1$ unknown ancillary (or nuisance) parameter
- ϵ_{nt} is a 1 × 1 unobserved idiosyncratic variable.
- We estimate β_0 from panel data $\{y_{nt}, x_{nt}\}_{n=1}^{NT}$ with NT observations.

The ordinary least squares estimator

ullet The ordinary least squares (OLS) estimator of eta_0 is defined as:

$$\begin{split} \beta_{OLS}^{(N)} & \equiv & \arg\min_{\beta} \left\{ \sum_{n=1}^{N} \left(y_n - x_n' \beta \right)^2 \right\} \\ & = & \arg\min_{\beta} \sum_{n=1}^{N} \left[y_n^2 - 2\beta' x_n y_n + \left(x_n' \beta \right) \left(x_n' \beta \right) \right] \end{split}$$

• The $k \times 1$ first order condition (FOC) for this problem is:

$$0 = -2\sum_{n=1}^{N} x_n y_n + 2\sum_{n=1}^{N} x_n x_n' \beta_{OLS}^{(N)}$$

• If the $k \times k$ matrix $\frac{1}{N} \sum_{n=1}^{N} x_n x_n'$ has a nonzero determinant, then it is invertible and:

$$\beta_{OLS}^{(N)} = \left(\frac{1}{N} \sum_{n=1}^{N} x_n x_n'\right)^{-1} \left(\frac{1}{N} \sum_{n=1}^{N} x_n y_n\right)$$
(3)

• If $\frac{1}{N} \sum_{n=1}^{N} x_n x_n'$ is not invertible then the solution to this quadratic minimization problem is not unique.

Linear Projections

Metrics for approximations

- Let $F_{y,x}(y,x)$ denote the joint distribution function of (y,x) for the population, or data generating process.
- Also define an L_p space of real valued functions of (y, x), with elements $h(y, x) \in L_p$, by the condition:

$$\int |h(y,x)|^p dF_{y,x}(y,x) < \infty$$

equipped with norm:

$$\|h(y,x)\|_{L_{p}} \equiv \left[\int |h(y,x)|^{p} dF_{y,x}(y,x)\right]^{\frac{1}{p}}$$

• Given an L_p space define the *linear projection* of y on to x as:

$$\beta_{\|\cdot\|_{L_{p}}} \equiv \underset{\beta \in \mathbb{R}^{k}}{\min} \|y - x'\beta\|_{L_{p}} = \underset{\beta \in \mathbb{R}^{k}}{\arg\min} \left\{ E\left[\left|y - x'\beta\right|^{p}\right] \right\} \tag{4}$$

• Thus $\beta_{\|\cdot\|_{L_p}}$ defines how closely a linear function of x is to central tendencies of the conditional distribution $F_{y|x^{-}}(y|x)$.

Linear Projections

Projecting y on x

• If p=2, then $\beta_{\|\cdot\|_{L_2}}$ becomes:

$$\beta_{OLS} \equiv \arg\min E \left[\left(y - x'\beta \right)^2 \right] = \arg\min E \left[-2\beta' xy + \left(x'\beta \right)^2 \right]$$

with the FOC reducing to:

$$E[yx'] = E[xx']\beta_{OLS}$$

• If $E[x_nx'_n]$ is invertible then:

$$\beta_{OLS} = E \left[xx' \right]^{-1} E \left[xy \right]$$

• In this case $\beta_{OLS}^{(N)}$ is the sample analogue of $\widehat{\beta}$, is found by replacing:

$$E\left[xx'\right]$$
 with $\left(\frac{1}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)$ and $E\left[xy\right]$ with $\left(\frac{1}{N}\sum_{n=1}^{N}x_{n}y_{n}\right)$

Linear Projection

Projecting y on x with a different norm

- Using a different norm changes the solution to the linear projection.
- For example if $||z|| \equiv E[|z|]$ then (4) reduces to:

$$\beta_{LAD} \equiv \underset{\beta}{\arg\min} E\left[\left|y-x'\beta\right|\right] = \underset{\beta}{\arg\min} E\left[\max\left\{y-x'\beta,x'\beta-y\right\}\right]$$

• The sample analogue of β_{LAD} , called the *least absolute deviations* (LAD) estimator, minimizes:

$$\frac{1}{N}\sum_{n=1}^{N}\left|y_{n}-x_{n}'\beta\right|\tag{5}$$

- Note (5) is not differentiable with respect to β wherever $y_n = x'_n \beta$.
- Nevertheless $\widehat{\beta}_{LAD}^{(N)}$ is the solution to the linear program:

$$\widehat{\beta}_{LAD}^{(N)} \equiv \underset{\beta,u_1,\dots,u_N}{\arg\min} \frac{1}{N} \sum_{n=1}^N u_n$$
 such that $u_n \geq y_n - x_n' \beta$ and $u_n \geq x_n' \beta - y_n$

Quantile Estimators

Rationale and definition

- The LAD estimator is an example of a quantile estimator.
- For any $\tau \in (0,1)$ choose β to minimize:

$$\mathsf{E}\left[\left(\tau-1\right)\int_{-\infty}^{x'\beta}\left(y-x'\beta\right)\mathsf{dF}\left(y\left|x\right.\right)+\tau\int_{x'\beta}^{\infty}\left(y-x'\beta\right)\mathsf{dF}\left(y\left|x\right.\right)\right]$$

(Note $y \le x'\beta$ in the first integral and $y \ge x'\beta$ in the second.)

• The FOC for the solution β_{τ} is:

$$E\left[\left(1-\tau\right)\int_{-\infty}^{x'\beta_{\tau}}dF\left(y\left|x\right.\right)=\tau\int_{x'\beta_{\tau}}^{\infty}dF\left(y\left|x\right.\right)\right]$$

and a sample analogue, $\beta_{\tau}^{(N)}$, minimizes:

$$\frac{1}{N}\sum\nolimits_{n = 1}^N {\left[{\left({\tau - 1} \right)I\left\{ {{y_n} \le {x_n'}\beta } \right\} + \tau I\left\{ {{y_n} > {x_n'}\beta } \right\}} \right]\left({{y_n} - {x_n'}\beta } \right)$$

ullet Setting au=0.5, the median, defines the LAD estimator.

Ordinary Least Squares

Estimation error

• Substituting (1) into (3) yields:

$$\beta_{OLS}^{(N)} = \left(\frac{1}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)^{-1} \left[\frac{1}{N}\sum_{n=1}^{N}x_{n}\left(x_{n}'\beta_{0}+\epsilon_{n}\right)\right]$$

$$= \left(\frac{1}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)^{-1} \left(\frac{1}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)\beta_{0}$$

$$+ \left(\frac{1}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)^{-1} \left(\frac{1}{N}\sum_{n=1}^{N}x_{n}\epsilon_{n}\right)$$

$$= \beta_{0} + \left(\frac{1}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)^{-1} \left(\frac{1}{N}\sum_{n=1}^{N}x_{n}\epsilon_{n}\right)$$

• Thus the estimation error is:

$$\delta_{OLS}^{(N)} \equiv \beta_{OLS}^{(N)} - \beta_0 = \left(\frac{1}{N} \sum_{n=1}^{N} x_n x_n'\right)^{-1} \left(\frac{1}{N} \sum_{n=1}^{N} x_n \epsilon_n\right)$$
(6)

Ordinary Least Squares

An orthogonality condition assumption

- Denote $x^{(N)} \equiv (x_1, \dots, x_N)$ and assume $E\left[\epsilon_n \middle| x^{(N)}\right] = 0$.
- Then $E\left[\delta_{OLS}^{(N)}\left|x^{(N)}\right.
 ight]=0$, and $\beta_{OLS}^{(N)}$ is unbiased, meaning:

$$E\left[eta_{OLS}^{(N)}\left|x^{(N)}\right.
ight]=eta_{0}$$

• When $E\left[\epsilon_{n}\left|x^{(N)}\right.
ight]=0$ the variance of $eta_{OLS}^{(N)}$ is:

$$E\left\{ \begin{bmatrix} \left(\frac{1}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)^{-1}\left(\frac{1}{N}\sum_{n=1}^{N}x_{n}\epsilon_{n}\right)\right] \\ \times \left[\left(\frac{1}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)^{-1}\left(\frac{1}{N}\sum_{n=1}^{N}x_{n}\epsilon_{n}\right)\right]' \mid x^{(N)} \right\}$$
(7)

$$= E \left[\frac{\left(\frac{1}{N}\sum_{n=1}^{N} x_n x_n'\right)^{-1} \times}{\left(\frac{1}{N^2}\sum_{n=1}^{N}\sum_{m=1}^{N} x_n \epsilon_n \epsilon_m x_m'\right) \left(\frac{1}{N}\sum_{n=1}^{N} x_n x_n'\right)^{-1}} \mid x^{(N)} \right]$$

Ordinary Least Squares

A further specialization

Suppose it is also true that:

$$E\left[\epsilon_n \epsilon_m \,\middle|\, x^{(N)}\right] = \left\{ \begin{array}{l} \sigma^2 \text{ if } m = n \\ 0 \text{ if } m \neq n \end{array} \right. \tag{8}$$

• Then (7) simplifies to:

$$E\left[\delta_{OLS}^{(N)}\delta_{OLS}^{(N)'}\left|x^{(N)}\right]\right] = \frac{\left(\frac{1}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)^{-1} \times}{\left(\frac{1}{N^{2}}\sum_{n=1}^{N}\sum_{m=1}^{N}x_{n}E\left[\epsilon_{n}\epsilon_{m}\left|x_{n},x_{m}\right]x_{m}'\right|x^{(N)}\right)\left(\frac{1}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)^{-1}} = \left(\frac{1}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)^{-1}\left(\frac{\sigma^{2}}{N^{2}}\sum_{n=1}^{N}x_{n}x_{n}'\right)\left(\frac{1}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)^{-1} = \frac{\sigma^{2}}{N}\left\{\left(\frac{1}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)^{-1}\right\}$$

A transformation

- Assume $E\left[\epsilon_n\left|x^{(N)}\right.\right]=0$ for all $n\in\{1,\ldots,N\}$.
- Let $e^{(N)} \equiv (e_1, \dots, e_N)'$ denote the vector of unobserved variables.
- Denote their covariance matrix by $\Psi \equiv E\left[\epsilon^{(N)}\epsilon^{(N)\prime}\left|x^{(N)}\right.\right]$.
- Since Ψ is positive definite, $\Psi^{-1/2}$ exists and satisfies:

$$\Psi^{-1} = \Psi^{-1/2} \Psi^{-1/2}$$

• Stack the individual equations and premultiply the resulting matrix equation by $\Psi^{-1/2}$ to obtain a transformation of (1):

$$y_n^* = x_n^{*\prime} \beta + \epsilon_n^* \tag{9}$$

where:

$$\begin{array}{lll} \left(y_1^*,\ldots,y_N^*\right)' & \equiv & \Psi^{-1/2}\left(y_1,\ldots,y_N\right)' \\ \left(\varepsilon_1^*,\ldots,\varepsilon_N^*\right)' & \equiv & \Psi^{-1/2}\left(\varepsilon_1,\ldots,\varepsilon_N\right)' \\ \left(x_1^*,\ldots,x_N^*\right) & \equiv & \left(x_1,\ldots,x_N\right)\Psi^{-1/2} \end{array}$$

Definition

We define the generalized least squares (GLS) estimator by:

$$\begin{split} \beta_{GLS}^{(N)} & \equiv & \arg\min_{\beta} \left\{ \sum_{n=1}^{N} \left(y_{n}^{*} - x_{n}^{*'} \beta \right)^{2} \right\} \\ & = & \left(\frac{1}{N} \sum_{n=1}^{N} x_{n}^{*} x_{n}^{*'} \right)^{-1} \left(\frac{1}{N} \sum_{n=1}^{N} x_{n}^{*} y_{n}^{*} \right) \end{split}$$

The assumptions in the previous slide imply:

$$E\left[\epsilon_n^* \left| x^{(N)} \right.\right] = 0$$

$$E\left[\epsilon_n^* \epsilon_m^* \left| x^{(N)} \right.\right] = \begin{cases} 1 \text{ if } m = n \\ 0 \text{ if } m \neq n \end{cases}$$

• Thus $\beta_{GLS}^{(N)}$ is unbiased.

A random effects estimator for panel data

- Returning to the model of panel data $\{y_{nt}, x_{nt}\}_{n=1}^{NT}$ with specification (2) we briefly consider the following two estimators.
- The first defines:

$$\widehat{\epsilon}_{nt} \equiv \gamma_n + \epsilon_{nt}$$

and treats the equation be estimated as:

$$y_{nt} = x'_{nt}\beta_0 + \widehat{\epsilon}_{nt} \tag{10}$$

- A random effects estimator (RE) is to conduct OLS or GLS on (10).
- Without loss of generality $E\left[\epsilon_{nt}\left|\gamma_{n}\right.\right]=0$. The RE estimator is unbiased if:

$$E\left[\epsilon_{nt}\left|x^{(N)}\right.\right] = E\left[\gamma_n\left|x^{(N)}\right.\right] = 0$$

A first-difference estimator for panel data

Alternatively apply the difference operator to (2) and obtain:

$$\Delta y_{nt} = \Delta x_{nt}' \beta_0 + \Delta \epsilon_{nt} \tag{11}$$

where:

$$\Delta y_{nt} \equiv y_{n,t+1} - y_{nt}$$
 $\Delta x_{nt} \equiv x_{n,t+1} - x_{nt}$
 $\Delta \epsilon_{nt} \equiv \epsilon_{n,t+1} - \epsilon_{nt}$

- Then using (11) estimate β_0 from $\{y_{nt}, x_{nt}\}_{n=1}^{N,T-1}$ with OLS or GLS.
- The FD estimator is unbiased if:

$$E\left[\epsilon_{nt}\left|x^{(N)}\right.\right]=0$$

but correlations between x_{nt} and γ_n do not affect the properties of this estimator.

Constructing the covariance matrices for these two GLS estimators

• Without loss of generality $E\left[\epsilon_{nt}\left|\gamma_{n}\right.\right]=0$ and hence:

$$E\left[\epsilon_{nt}\left|\gamma_{n}\right.\right]=0\Rightarrow E\left[\epsilon_{nt}\gamma_{n}\right]=0$$

- For now we also assume:
 - ullet $E\left[arepsilon_{nt}arepsilon_{ms}
 ight] =0$ for all m
 eq n and all (s,t)
 - $E\left[\epsilon_{nt}\epsilon_{ns}\right]=0$ for all $s\neq t$
 - $E\left[\epsilon_{nt}^2\right] = \sigma_{\epsilon}^2$
- If $E\left[\gamma_n^2\right]=\sigma_\gamma^2$ and $E\left[\gamma_n\gamma_m\right]=0$ for all $m\neq n$, then the nonzero elements of Ψ_{RE} are:

$$E\left[\widehat{\epsilon}_{nt}\widehat{\epsilon}_{ns}\right] = \left\{ \begin{array}{l} \sigma^2 + \sigma_{\gamma}^2 \text{ if } s = t \\ \sigma_{\gamma}^2 \text{ if } s \neq t \end{array} \right.$$

ullet By way of contrast the only nonzero elements of Ψ_{FD} are:

$$E\left[\Delta\epsilon_{nt}\Delta\epsilon_{ns}
ight] = \left\{ egin{array}{l} 2\sigma_{\epsilon}^2 \ ext{if} \ s=t \ -\sigma_{\epsilon}^2 \ ext{if} \ s=t+1 \end{array}
ight.$$

Motivation

Rearranging the FOC for the quadratic defining OLS gives:

$$0 = \sum_{n=1}^{N} x_n \left(y_n - x_n' \beta_{OLS}^{(N)} \right)$$

- As a matter of computation $\beta_{OLS}^{(N)}$ is obtained by:
 - premultiplying $(y_n x'_n \beta_{OLS}^{(N)})$ by x_n
 - solving the resulting k equations in k unknowns.
- Moreover its unbiasedness stems from the assumption that:

$$0 = E\left[\epsilon_n \left| x^{(N)} \right.\right] = E\left[y_n - x_n'\beta_0 \left| x^{(N)} \right.\right]$$

• Instead of premultiplying $\left(y_n - x_n' \beta_{OLS}^{(N)}\right)$ by x_n we could premultiply $\left(y_n - x_n' \beta_{OLS}^{(N)}\right)$ by $z_n \equiv Aw_n$ for some $k \times I$ matrix A and some $I \times 1$ instrument vector, where I > k, and base the estimator on a different set of equations.

Definition

Accordingly define an instrumental variables (IV) estimator by:

$$0 = \sum\nolimits_{n = 1}^N {{z_n}\left({{y_n} - x_n'\beta _{IV}^{(N)}} \right)}$$

• If $\frac{1}{N} \sum_{n=1}^{N} z_n x_n'$ is invertible (has a nonzero determinant), then similar to above:

$$\beta_{IV}^{(N)} = \left(\frac{1}{N} \sum_{n=1}^{N} z_n x_n'\right)^{-1} \left(\frac{1}{N} \sum_{n=1}^{N} z_n y_n\right)^{-1}$$

• To investigate the finite sample properties of $\beta_{IV}^{(N)}$ we follow the same reasoning we applied to $\beta_{OLS}^{(N)}$ by substituting for y_n to obtain:

$$\beta_{IV}^{(N)} = \left(\frac{1}{N}\sum_{n=1}^{N}z_{n}x_{n}'\right)^{-1}\frac{1}{N}\sum_{n=1}^{N}z_{n}\left(x_{n}'\beta_{0}+\epsilon_{n}\right)$$
$$= \beta_{0}+\left(\frac{1}{N}\sum_{n=1}^{N}z_{n}x_{n}'\right)^{-1}\left(\frac{1}{N}\sum_{n=1}^{N}z_{n}\epsilon_{n}\right)$$

Conditions for the existence of an unbiased estimator

• In this case the estimation error is:

$$\delta_{IV}^{(N)} \equiv \beta_{IV}^{(N)} - \beta_0 = \left(\frac{1}{N} \sum_{n=1}^{N} z_n x_n'\right)^{-1} \left(\frac{1}{N} \sum_{n=1}^{N} z_n \epsilon_n\right)$$
(12)

• Let $v^{(N)} \equiv \left(x^{(N)}, w^{(N)}\right)$. If $E\left[\epsilon_n \left|v^{(N)}\right.\right] = 0$ then $E\left[\delta_{IV}^{(N)} \left|v^{(N)}\right.\right] = 0$ and $\beta_{IV}^{(N)}$ is unbiased, and (as we show on the next slides):

$$E\left[\delta_{IV}^{(N)}\delta_{IV}^{(N)\prime}\left|v^{(N)}\right.\right] = \frac{1}{N}Y^{(N)}E\left[\Omega^{(N)}\left|v^{(N)}\right.\right]Y^{(N)\prime}$$

where:

$$Y^{(N)} \equiv \left(\frac{1}{N}\sum_{n=1}^{N} z_n x_n'\right)^{-1}$$

$$\Omega^{(N)} \equiv \frac{1}{N}\sum_{n=1}^{N} z_n z_n' \epsilon_n^2 + \frac{1}{N}\sum_{s=2}^{N}\sum_{n=1}^{s-1} \left(z_n z_{n+s}' + z_{n+s} z_n'\right) \epsilon_n \epsilon_{n+s}$$

Parsing the covariance

• From (12):

$$E\left[\delta_{IV}^{(N)}\delta_{IV}^{(N)\prime}\left|v^{(N)}\right.\right]$$

$$= E\left\{\begin{cases} \left(\frac{1}{N}\sum_{n=1}^{N}z_{n}x_{n}'\right)^{-1}\left(\frac{1}{N}\sum_{n=1}^{N}z_{n}\epsilon_{n}\right)\\ \times \left(\frac{1}{N}\sum_{n=1}^{N}z_{m}\epsilon_{m}\right)'\left(\frac{1}{N}\sum_{n=1}^{N}z_{n}x_{n}'\right)^{-1\prime}\right.\left|v^{(N)}\right.\right\}$$

$$= Y^{(N)}E\left\{\left(\frac{1}{N}\sum_{n=1}^{N}z_{n}\epsilon_{n}\right)\left(\frac{1}{N}\sum_{m=1}^{N}z_{m}\epsilon_{m}\right)'\left|v^{(N)}\right.\right\}Y^{(N)'}$$

Parsing the covariance (continued)

• Focusing on the middle terms involving ϵ_n and ϵ_m :

$$\begin{split} &\left(\sum_{n=1}^{N} z_{n} \varepsilon_{n}\right) \left(\sum_{n=1}^{N} z_{m} \varepsilon_{m}\right)' \\ &= \sum_{n=1}^{N} \sum_{m=1}^{N} z_{n} \varepsilon_{n} \varepsilon_{m} z'_{m} \\ &= \sum_{n=1}^{N} z_{n} \varepsilon_{n}^{2} z'_{n} + \sum_{s=2}^{N} \sum_{n=1}^{s-1} \left(z_{n} z'_{n+s} + z_{n+s} z'_{n}\right) \varepsilon_{n} \varepsilon_{n+s} \end{split}$$

• The last line comes from visualizing the matrix of terms:

$$\begin{bmatrix} z_1 \epsilon_1^2 z_1' & \cdots & z_1 \epsilon_1 \epsilon_N z_N' \\ \vdots & \ddots & \vdots \\ z_N \epsilon_N \epsilon_1 z_1' & \cdots & z_N \epsilon_N^2 z_N' \end{bmatrix}$$

 Substituting the expression above back into the formula for the variance gives the result.

Constrained Least Squares

Definition and Solution

• Now suppose we have information about the unknown parameter vector β_0 that takes the form of a linear constraint, q equations in β_0 :

$$Q\beta_0 = c \tag{13}$$

where:

- Q is a $q \times k$ matrix
- $c = q \times 1$ vector
- as before β_0 is $k \times 1$.
- The constrained least squares (CLS) estimator is defined by:

$$eta_{\mathit{CLS}}^{(N)} \equiv rg\min_{eta} \left\{ \sum_{n=1}^{N} \left(y_n - x_n' eta
ight)^2
ight.$$
 such that $Qeta = c
ight\}$

 \bullet The next slides show $\beta_{\it CLS}^{(\it N)} - \beta_{\it OLS}^{(\it N)} =$

$$\left[\left(\frac{1}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)^{-1}Q'\right]\left[Q\left(\frac{1}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)^{-1}Q'\right]^{-1}\left(Q\beta_{OLS}^{(N)}-c\right)$$

Constrained Least Squares

Proof of formula for CLS

Define:

$$\eta \equiv \beta_{CLS}^{(N)} - \beta_{OLS}^{(N)} \qquad \gamma \equiv c - Q \beta_{OLS}^{(N)}$$

• From the constraint:

$$0 = Q\beta_{CLS}^{(N)} - c = Q\left(\beta_{CLS}^{(N)} - \beta_{OLS}^{(N)}\right) - c + Q\beta_{OLS}^{(N)} = Q\eta - \gamma \quad (14)$$

The Lagrangian for the optimization problem can be written as:

$$\sum_{n=1}^{N} (y_n - x'_n \beta)^2 + \lambda (Q\beta - c)$$

and has FOC:

$$0 = -\left(\frac{2}{N}\sum_{n=1}^{N}x_{n}y_{n}\right) + \left(\frac{2}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)\beta_{CLS}^{(N)} + Q\lambda$$

$$= \left(\frac{2}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)\left(\beta_{CLS}^{(N)} - \beta_{OLS}^{(N)}\right) + Q\lambda$$

$$= \left(\frac{2}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)\eta + Q\lambda$$
(15)

Constrained Least Squares

Proof of formula for CLS continued

• From (14) and (15):

$$\gamma = Q\eta \qquad \eta = -\left(\frac{2}{N}\sum_{n=1}^{N}x_nx_n'\right)^{-1}Q'\lambda$$

• Solving for λ in terms of γ :

$$Q\eta = -Q\left(\frac{2}{N}\sum_{n=1}^{N}x_nx_n'\right)^{-1}Q'\lambda = \gamma$$

and hence:

$$\lambda = -\left[Q\left(\frac{2}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)^{-1}Q'\right]^{-1}\gamma$$

$$\Rightarrow \eta = \left[\left(\frac{1}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)^{-1}Q'\right]\left[Q\left(\frac{1}{N}\sum_{n=1}^{N}x_{n}x_{n}'\right)^{-1}Q'\right]^{-1}\gamma$$

ullet Using the definitions of η and γ the formula now follows directly.

Specification Error versus Efficiency

Trading off efficiency with specification error

- Even if $E\left[\varepsilon_{n} \mid x_{n}\right] \neq 0$ and hence $\beta_{OLS}^{(N)}$ is biased, an unbiased estimator $\beta_{IV}^{(N)}$ can be obtained if there exists some z_{n} satisfying:
 - the invertibility assumption for $\frac{1}{N} \sum_{n=1}^{N} z_n x'_n$
 - ② the orthogonality condition $E[\epsilon_n | z_n] = 0$.
- This raises the question of why OLS is ever used instead of IV, since the latter seems less restrictive.
- In Assignment 3 you are asked to show that:

$$E\left[\delta_{OLS}^{(N)}\delta_{OLS}^{(N)\prime}\right] \le E\left[\delta_{IV}^{(N)}\delta_{IV}^{(N)\prime}\right]$$

• Similarly one can show that:

$$E\left[\delta_{CLS}^{(N)}\delta_{CLS}^{(N)\prime}\right] \leq E\left[\delta_{OLS}^{(N)}\delta_{OLS}^{(N)\prime}\right]$$

• Comparing the FE and the RE estimators raises similar issues. The former is based on N(T-1) observations, but the latter requires $E\left[\gamma_n | x_{nt}\right] = 0$ for unbiasedness.

Specification Error versus Efficiency

Mean square error

- The mean square error (MSE) is one way to evaluate the trade-off between bias and variance.
- Let $\theta \equiv \sum_{k=0}^{K-1} a_k \beta_k$ be a known linear combination of β defined by $a \equiv (a_0, \dots, a_{K-1}) \in \mathbb{R}^K$.
- ullet For any estimator $heta^{(N)}$ of $heta_0$ we define the MSE as:

$$MSE\left(\theta^{(N)}\right) \equiv E\left[\left(\theta^{(N)} - \theta_0\right)^2\right]$$

$$= E\left[\left(\theta^{(N)} - E\left[\theta^{(N)}\right] + E\left[\theta^{(N)}\right] - \theta_0\right)^2\right]$$

$$= E\left[\left\{\theta^{(N)} - E\left[\theta^{(N)}\right]\right\}^2 + \left\{E\left[\theta^{(N)}\right] - \theta_0\right\}^2\right]$$

$$+ 2\left\{\theta^{(N)} - E\left[\theta^{(N)}\right]\right\} \left\{E\left[\theta^{(N)}\right] - \theta_0\right\}$$

$$= E\left[\left\{\theta^{(N)} - E\left[\theta^{(N)}\right]\right\}^2\right] + \left\{E\left[\theta^{(N)}\right] - \theta_0\right\}^2$$

Shrinkage Estimators

CLS as a response to overfitting

- Loosely speaking, the term overfitting means:
 - massaging the data with enough parameters and variables
 - in order to explain the sample very well
 - without reference to the underlying population.
- A fundamental limitation of this approach is that:
 - since the population does not exactly replicate the sample,
 - predicting out of sample is problematic.
- By imposing linear constraints on the model CLS:
 - reduces (or shrinks) the dimension of the basis defining the parameter space
 - and in this way increases the precision of the estimates,
 - that is if the constraints are (approximately) correct.
- One advantage of CLS, interpreted as a shrinkage estimator, is that the constraints are often easy to interpret, and may have some economic or institutional content.

Shrinkage Estimators

Lasso and Ridge regressions

• Another approach is to shrink the parameters by choosing β to minimize:

$$N^{-1}\sum_{n=1}^{N} (y_n - x_n'\beta)^2$$
 subject to $\left(\sum_{k=1}^{K} |\beta_k|^p\right)^{1/p} \le t$ (16)

for some $p \in \mathbb{R}^+$ and $t \in \mathbb{R}^+$.

- The *lasso* (least absolute shrinkage and selection operator) estimator solves (16) for p=1.
- The *ridge* (or Stein) estimator solves (16) for p = 2.
- A third variation, the *best subset selection*, is defined by requiring $t \in \{1, ..., K-1\}$ and replacing (16) with:

$$N^{-1}\sum_{n=1}^{N}\left(y_{n}-x_{n}'eta
ight)^{2}$$
 subject to $\sum_{k=1}^{K}1\left\{eta_{k}
eq0
ight\}\leq t$

Shrinkage Estimators

Lasso and Ridge regressions

- All three estimators (trivially) reduce overfitting, by constraining the objective function.
- ullet Lasso and Ridge penalize all candidate values of eta_k relative to their OLS counterparts.
- Lasso and best-subset-selection eliminate regressors with low explanatory power in OLS.
- Combining these estimators with machine learning could be useful in pointing to empirical patterns that guide the development of a structural model.
- However this class of estimators is not motivated by an economic theory that explains comovements within the population, so is not particularly useful for predictive purposes outside of the sample.