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Lectures on Structural Econometrics
Website, topics and themes

The lecture material, some assignments and background reading for
these 28 sessions can be found at:

http://comlabgames.com/structuraleconometrics/

There are two sets of lectures with four segments in the first group:
1 Introduction to Structural Econometrics
2 Summarizing the Data
3 Probability
4 Asymptotic Theory for Nonlinear Models

There are three segments in the second set of lectures.
1 Dynamic Discrete Choice
2 Market Microstructure
3 Optimal Contracting

Throughout these lectures we will imagine the data is generated by a
model, and embrace the classical laws of probability and statistics.
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Lectures on Structural Econometrics
General approach to estimation and testing

For the most part we assume the model comes from economics:

Individuals solve dynamic optimization problems.
Groups of individuals or firms play a noncooperative game using
equilibrium strategies.
Asymmetrically informed individuals optimally contract with each other.
Individuals and firms make consumption and production choices in
competitive equilibrium.

To help understand how economic models provide the basis for
estimation and testing we introduce the course by analyzing some of
the first structural econometric models in:

dynamic discrete choice
competitive equilibrium models with continuous choices
market microstructure
optimal contracting with moral hazard.
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Introduction to Structural Econometrics Modeling
Data generating process

The data typically comprise a sample of individuals for which there
are records on some of their:

background characteristics
choices
outcomes from those choices.

What are the challenges to making predictions and testing hypotheses
when we take this approach?

1 The choices and outcomes of economic models are typically nonlinear
in the underlying parameters of the model we wish to estimate.

2 The data variables on background, choices and outcomes might be an
incomplete description about what is relevant to the model.
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Dynamic Discrete Choice
Choices

Each period t ∈ {1, 2, . . . ,T} for T ≤ ∞, an individual chooses
among J mutually exclusive actions.

Let djt equal one if action j ∈ {1, . . . , J} is taken at time t and zero
otherwise:

djt ∈ {0, 1}
J

∑
j=1
djt = 1

At an abstract level assuming that choices are mutually exclusive is
innocuous, because two combinations of choices sharing some
features but not others can be interpreted as two different choices.

For example in a female labor supply and fertility model, suppose:

j ∈ {(work, no birth) , (work, birth) , (no work, no birth) , (no work, birth)}
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Dynamic Discrete Choice
Information and states

Suppose that actions taken at time t can potentially depend on the
state zt ∈ Z .
For Z finite denote by fjt (zt+1|zt ), the probability of zt+1 occurring in
period t + 1 when action j is taken at time t.
For example in the example above, suppose zt = (wt , kt ) where:

kt ∈ {0, 1, . . .} are the number of births before t
wt ≡ d1,t−1 + d2,t−1, so wt = 1 if the female worked in period t − 1,
and wt = 0 otherwise.

Note that Z must be defined compatible to the transition matrix: for
example setting zt = (wt , kt ) where kt ∈ {0, 1, . . .} are the number
of births before t − 1, is incompatible with assumption about
transitions and choices.
With up to 5 offspring, 3 levels of experience, the number of states
including age (say 50 years) is 750. Add in 4 levels of education (less
than high school, high school, some college and college graduate) and
3 racial categories, increases this number to 9000.
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Dynamic Discrete Choice
Large but sparse matrices

When Z is finite there is a Z × Z transition matrix for each (j , t).
In many applications the matrices are sparse.
In the example above they have 9, 0002 = 81 million cells.
However households can only increase the number of kids one at time.
They can only increase or decrease their work experience by one unit
at most.
Hence there are at most six cells they can move from (wt , kt ):{

(wt , kt ) , (wt , kt + 1) , (wt + 1, kt ) ,
(wt + 1, kt + 1) , (wt − 1, kt ) , (wt − 1, kt + 1)

}
Therefore a transition matrix has at most 54, 000 nonzero elements,
and all the nonzero elements are one.
Given a deterministic sequence of actions sequentially taken over S
periods, we can form the S period transition matrix by producting the
one period transitions.
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Dynamic Discrete Choice
More on information and states

If Z is a Euclidean space fjt (zt+1|zt ) is the probability (density
function) of zt+1 occurring in period t + 1 when j is picked at time t.

With almost identical notation we could model zt ∈ Zt and in this
way generalize from states of the world to histories, or information
known at t, or t-measurable events.

For example in a health application we might define zt ≡ {hs}t−1s=1 as
a medical record with hs ∈ {healthy at s, sick at s}.
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Dynamic Discrete Choice Models
Preferences and expected utility

The individual’s current period payoff from choosing j at time t is
determined by zt , which is revealed to the individual at the beginning
of the period t.
The current period payoff at time t from taking action j is ujt (zt ).
Given choices (d1t , . . . , dJt ) in each period t ∈ {1, 2, . . . ,T} and
each state zt ∈ Z the individual’s expected utility is:

E

{
T

∑
t=1

J

∑
j=1

βt−1djtujt (zt ) |z1

}

where β ∈ (0, 1) is the subjective discount factor, and at each period
t the expectation is taken over z2, . . . , zT .
Formally β is redundant if u is subscripted by t; we typically include a
geometric discount factor so that infinite sums of utility are bounded,
and the optimization problem is well posed.
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Dynamic Discrete Choice Models
Value Function

Write the optimal decision at period t as a decision rule denoted by
dot (zt ) formed from its elements dojt (zt ).

Let Vt (zt ) denote the value function in period t, conditional on
behaving according to the optimal decision rule:

Vt (zt ) ≡ E
[
T

∑
τ=t

J

∑
j=1

βτ−tdojτ (zτ) ujτ(zτ) |zt

]

In terms of period t + 1:

βVt+1(zt+1) ≡ βE

{
T

∑
τ=t+1

J

∑
j=1

βτ−t−1dojτ (zτ) ujτ(zτ) |zt+1

}
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Dynamic Discrete Choice Models
Recursive Representation

Appealing to Bellman’s (1958) principle we obtain, when Z is finite:

Vt (zt ) =
J

∑
j=1
dojtujt (zt )

+
J

∑
j=1
dojt ∑

z∈Z
E

[
T

∑
τ=t+1

J

∑
j=1

βτ−tdojτ (zτ) ujτ(zτ) |z
]
fjt (z |zt )

=
J

∑
j=1
dojt

[
ujt (zt ) + β ∑

z∈Z
Vt+1(z)fjt (z |zt )

]

A similar expression holds when Z is Euclidean using an integral.
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Dynamic Discrete Choice Models
Optimization

To compute the optimum for T finite, we first solve a static problem
in the last period to obtain doT (zT ) for all zT ∈ Z .
Applying backwards induction i ∈ {1, . . . , J} is chosen to maximize:

uit (zt ) + E

{
T

∑
τ=t+1

J

∑
j=1

βτ−t−1dojτ (zτ) ujτ(zτ) |zt , dit = 1
}

In the stationary infinite horizon case we assume ujt (z) ≡ uj (z) and
that uj (z) < ∞ for all (j , z).

Consequently expected utility each period is bounded and the
contraction mapping theorem applies, proving dot (z)→ do (z) for
large T .
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Inference
Estimating a model when all heterogeneity is observed

Let vjt (zt ) denote the flow payoff of any action j ∈ {1, . . . , J} plus
the expected future utility of behaving optimally from period t + 1 on:

vjt (zt ) ≡ ujt (zt ) + β ∑
z∈Z

Vt+1(z)fjt (z |zt )

By definition:

dojt (zt ) ≡ I {vjt (zt ) ≥ vkt (zt )∀ k}
Suppose we observe the states znt and decisions dnt ≡ (dn1t , . . . , dnJt )
of individuals n ∈ {1, . . . ,N} over time periods t ∈ {1, . . . ,T} .
Could we use such data to infer the primitives of the model:

1 A consistent estimator of fjt (zt+1 |zt ) can be obtained from the
proportion of observations in the (t, j , zt ) cell transitioning to zt+1.

2 There are (J − 1)∑Nn=1 I {znt = zt} inequalities relating the pairs of
mappings vjt (zt ) and vkt (zt ) for each observation on dnt at (t, zt ).

3 Can we recursively derive the values of ujt (zt ) from the vjt (zt ) values?
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Inference
Why unobserved heterogeneity is introduced into data analysis

Note that if two people in the data set with the same (t, zt ) made
different decisions, say j and k, then vjt (zt ) = vkt (zt ). This raises
two potential problems for modeling data this way:

1 In a large data set it is easy to imagine that for every choice
j ∈ {1, . . . , J} and every (t, zt ) at least one sampled person n sets
dnjt = 1. If so, we would conclude that the population was indifferent
between all the choices, and hence the model would have no empirical
content because no behavior could be ruled out.

2 This approach does not make use of the information that some choices
are more likely than others; that is the proportions of the sample taking
different choices at (t, zt ) might vary, some choices being observed
often, others perhaps very infrequently.

For these two reasons, treating all heterogeneity as observed, and
trying to predict the decisions of individuals, is not a very promising
approach to analyzing data.
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Inference
Unobserved heterogeneity

A more modest objective is to predict the probability distribution of
choices margined over factors that individuals observe, but data
analysts do not.

In this respect we seek to predict the behavior of a population, not
each individual, essentially obliterating that difference between
macroeconomics and microeconomics.

We now assume the states can be partitioned into those which are
observed, xt , and those that are not, εt .

Thus zt ≡ (xt , εt ).
Suppose the data consist of N independent and identically distributed
draws from the string of random variables (X1,D1, . . . ,XT ,DT ).

The nth observation is given by
{
x (n)1 , d (n)1 , . . . , x (n)T , d (n)T

}
for

n ∈ {1, . . . ,N}.
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Inference
Transition density given optimal behavior

Denote the probability (density) of the pair (xt+1, εt+1), conditional

on
(
x (n)t , εt

)
and the optimal action taken by n at t, as:

Hnt
(
xt+1, εt+1

∣∣∣x (n)t , εt
)
≡

J

∑
j=1
d (n)jt d

o
jt

(
x (n)t , εt

)
fjt
(
xt+1, εt+1

∣∣∣x (n)t , εt
)

Note that both d (n)jt , an indicator that the data shows n chooses j at

t, and also dojt
(
x (n)t , εt

)
, what n would optimally choose j at t,

appear in this formula.

Thus Hnt
(
xt+1, εt+1

∣∣∣x (n)t , εt
)
embeds the assumption that the

density for (xt+1, εt+1) is generated by the joint transition

dojt
(
x (n)t , εt

)
fjt
(
xt+1, εt+1

∣∣∣x (n)t , εt
)
for the observed choice.
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Inference
Data generating process

The joint probability of
{
d (n)1 , x (n)2 , . . . , x (n)T , d (n)T

}
conditional on x (n)1

is:

Pr
{
d (n)1 , x (n)2 , . . . , x (n)T , d (n)T

∣∣∣x (n)1 }
=

∫
εT

. . .
∫
ε1


J
∑
j=1
I
{
d (n)jT = 1

}
dojT
(
x (n)T , εT

)
×

T−1
∏
t=1

Hnt
(
x (n)t+1, εt+1

∣∣∣x (n)t , εt
)
g
(

ε1

∣∣∣x (n)1 )
 dε1 . . . dεT

where g
(

ε1

∣∣∣x (n)1 )
is the density of ε1 conditional on x

(n)
1 .
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Inference
Maximum Likelihood Estimation

Let θ ∈ Θ uniquely index a specification of ujt (zt ), fjt (zt+1|zt ) and β
under consideration.

Conditional on x (n)1 suppose
{
d (n)1 , x (n)2 , . . . , , d (n)T

}N
n=1

was generated

by θ0 ∈ Θ.
Define ε ≡ (ε1, . . . , εT ) . The maximum likelihood (ML) estimator,
θML, selects θ ∈ Θ to maximize the joint probability of the observed
occurrences conditional on the initial conditions:

θML ≡ argmax
θ∈Θ

{
N−1

N

∑
n=1

log
(
Pr
{
d (n)1 , x (n)2 , . . . , x (n)T , d (n)T

∣∣∣x (n)1 ; θ
})}
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Inference
Identification and the properties of the ML estimator

This model is point identified if and only if (iff) θ0 is the unique
solution when θ ∈ Θ is chosen to maximize:∫

x (n)1
log
(
Pr
{
d (n)1 , x (n)2 , . . . , x (n)T , d (n)T

∣∣∣x (n)1 ; θ
})
dF
(
x (n)1

)
If the model is point identified, θML is

√
N consistent, asymptotically

normal, and asymptotically effi cient:
1 a model is point identified if no other model in the Θ set of models has
the same data generating process.

2 an estimator of an identified model is consistent if it converges to θ0 in
some probabilistic sense as N increases without bound.

3 the rate of convergence, 1/2 in this case, is the greatest α leaving the
limit of Nα (θML − θ0) bounded in some probabilistic sense.

4 asymptotic normality means the limiting distribution (again as N
increases without bound), of

√
N (θML − θ0) is normal.

5 asymptotic effi ciency refers to the lowest asymptotic variance of all
consistent estimators with the same rate of convergence.
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Criteria for Evaluating Estimators
Three criteria for assessing an estimator

Three criteria for evaluating an estimator of a point-identified model
are:

1 Large sample properties:

Does the estimator converge to the identified set?
If so, what is the rate of convergence?
What is the asymptotic distribution of the estimator?

2 Finite sample properties:

At what sample size do the finite sample properties accurately reflect
the asymptotic distribution?
For a given sample size, what is the standard deviation and mean
squared error of the estimator ?

3 Implementation:

Is the estimator defined by an algorithm or only a set of conditions to
be satisfied?
Are numerical approximations involved?
Does the estimator require tuning parameters or instruments?
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Large Sample or Asymptotic Properties
In what sense does an estimator converge, and what does it converge to?

There are several types of convergence, such as: almost sure, in mean
square, and in probability.
Given a type of convergence, we ask:

1 Does the estimator converge to a set that includes the identified set?
In other words is the estimator tight?

2 Is the set of parameters to which the estimator converges included in
the identified set? In other words is the estimator sharp?

If both conditions are satisfied, then we say the estimator is
consistent.
For example if the identified set is a singleton, that is the model is
pointwise identified, then an estimator is consistent if it converges to
that singleton.
Note that if the model is not point identified, we would not expect an
extremum estimator (such as a conventionally defined ML) to
converge.
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Large Sample or Asymptotic Properties
The rate of convergence

The other two criteria are extensively analyzed in econometric theory,
and can typically be applied to dynamic discrete choice models in a
straightforward way.

For example, suppose the parameter space is Θ, the data is generated
by θ0 ∈ Θ, the model in point identified, and the estimator, denoted
by θN is consistent with:

θN −→
p

θ0

The rate of convergence is defined by Nα where:

α = arg sup
a

[Na (θN − θ0)] −→
p
0

Structural estimates of dynamic discrete choice models are typically√
N consistent.
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Large Sample or Asymptotic Properties
The asymptotic distribution

Suppose θN converges in probability to θ0 at rate α.

Let ξ be drawn from the limiting distribution of Nα (θN − θ0):

Nα (θN − θ0) −→
d

ξ

Structural estimates of dynamic discrete choice models are typically
asymptotically normal.

An estimator is asymptotically effi cient if ξ is N
(
0, I (θ0)−1

)
where:

I (θ) ≡ E
[

∂l (d , x |x1 ; θ)
∂θ

∂l (d , x |x1 ; θ)
∂θ

′
]
= −E

[
∂2l (d , x |x1 ; θ)

∂θ∂θ′

]
and the likelihood is based on the sequence (d , x) conditional on the
state at date one, x1.
The ML estimator for dynamic discrete choice models typically attain
I (θ0)−1 the Cramer-Rao lower bound.
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Implementation
Does an algorithm define the estimator?

Ideally an estimator is defined by an algorithm that depends on the
data for each sample size N. In that case the estimator:

1 can be implemented mechanically, so is easy to explain;
2 is easy to replicate on the same and on different data sets, a virtue in
scientific enquiry.

Cell estimators and hence unrestricted ML estimators satisfy this
definition.

An OLS estimator also satisfies the first definition because algorithms
exist to invert matrices exactly, within a finite number of steps.

Similarly Gaussian methods, successively substituting out parameters,
solve linear systems quickly within a finite number of steps.
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Implementation
Is the estimator defined by a set of conditions it must satisfy?

A weaker, more inclusive definition is that an estimator solves a set of
conditions jointly satisfied by the parameter values and the data.
Since the algorithm used to implement the estimator is not defined,
such estimators are almost invariably, less transparent, and therefore
harder to replicate with data.
Extremum estimators for nonlinear models defined this way include:

nonlinear least squares;
full solution estimators to dynamic discrete choice models;
CCP estimators in which G or β is estimated.

It is useful to know whether a unique solution exists. For example:
Is the minimization (maximization) problem strictly convex (concave)?

If not, can all the parameters, bar one or two, be solved in terms of
the one or two remaining parameters?

In the first case, the concentrated objective function can be plotted.
In the second equi-value contours can be plotted.
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Implementation
Are numerical approximations involved?

Because ML estimation of dynamic discrete choice models is relatively
imposing in terms of programming demands and computational time,
researchers economize on both by using numerical approximations:

1 approximating distant horizons with zero;
2 approximating smoothed integrals with rectangles and quadrilaterals;
3 linearizing the value function;
4 interpolating the state space to obtain estimates of continuation values;
5 approximating E [max {x , y}] with max {E [x ] ,E [y ]};
6 reducing the impact of the state space by treating the continuation
value as a suffi cient statistic for the state space;

7 more generally only allowing the individuals to condition on a smaller
set of values than there are state variables.

These approximation errors open a gap between the defined estimator
and its numerical counterpart.
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